多边形的内角和教案3 一、素质教育目标 (一)知识教学点 1.使学生把握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力练习点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想. 3.会根据比较简单的条件画出指定的四边形. 4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想. (三)德育渗透点 使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好. (四)美育渗透点 通过四边形内角和定理数学,渗透统一美,应用美. 二、学法引导 类比、观察、引导、讲解 三、重点·难点·疑点及解决办法 1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题. 2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用. 3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角. 四、课时安排 2课时 五、教具学具预备 投影仪、胶片、四边形模型、常用画图工具 六、师生互动活动设计 教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料. 第2课时 七、教学步骤 复习提问 1.什么叫四边形?四边形的内角和定理是什么? 2.如图4-9, 求 的度数(打出投影). 引入新课 前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题. 讲解新课 1.四边形的外角 与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10. 2.外角和定理 例1 已知:如图4-11,四边形ABCD的四个内角分别为 ,每一个顶点处有一个外角,设它们分别为 . 求 . (1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和). (2)教给学生一组外角的画法——同向法. 即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和. (3)利用每一个外角与其邻补角的关系及四边形内角和为360°. 证得: 360° 外角和定理:四边形的外角和等于360° 3.四边形的不稳定性 ①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的外形和大小,已知一边一夹角,作三角形你会吗? (学生回答) ②若以 为边作四边形ABCD. 提示画法:①画任意小于平角的 . ②在 的两边上截取 . ③分别以A,C为圆心,以12mm,18mm为半径画弧,两弧相交于D点. ④连结AD、CD,四边形ABCD是所求作的四边形,如图4-13. 大家比较一下,所作出的图形的外形一样吗?这是为什么呢?因为 的大小不固定,所以四边形的外形不确定. ③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的外形改变了,这说明四边形没有稳定性. 教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确: ①四边形改变外形时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的外形就固定了,如教材P125中2的第H问,为克服不稳定性提供了理论根据. (4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育. 总结、扩展 1.小结: (1)四边形外角概念、外角和定理. (2)四边形不稳定性的应用和克服不稳定性的理论根据. 2.扩展:如图4-15,在四边形ABCD中, ,求四边形ABCD的面积 八、布置作业 教材P128中4. 九、板书设计 十、随堂练习 教材P124中1、2 补充:(1)在四边形ABCD中, , 是四边形的外角,且 ,则 度. (2)在四边形ABCD中,若分别与 相邻的外角的比是1:2:3:4,则 度, 度, 度, 度 (3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角.