2020届福建省福州市高三5月调研卷文科数学试题 带答案详解及评分标准PDF版
加入VIP免费下载

2020届福建省福州市高三5月调研卷文科数学试题 带答案详解及评分标准PDF版

ID:437317

大小:557.25 KB

页数:10页

时间:2020-12-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
福州市 2020 届高三文科数学 5 月调研卷 (满分:150 分 考试时间:120 分钟) 第 Ⅰ 卷(选择题,共 60 分) 一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有 一项是符合题目要求的. 1. 复数 || 2 iz i  ,则复数 z 在复平面内对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.已知全集为 R ,集合  2, 1,0,1,2A   , 1 02 xBxx  ,则  UA C BI 的元素个数为 A.1 B.2 C.3 D.4 3.已知 0.2 0.3 2log 0.2, 2 , 0.2a b c   ,则 A. abc B. a c b C.c a b D.b c a 4.某学生 5 次考试的成绩(单位:分)分别为 85,67, m ,80,93,其中 0m  ,若该学生在这 5 次考试中成绩的中位数为 80,则得分的平均数 不可能为 A.70 B.75 C.80 D.85 5.如图给出的是计算 1 1 11 3 5 2019   L 的值的一个程序框图, 则图中空白框中应填入 A. 1 23SS i  B. 1 21SS i  C. 1 1SSi D. 1 21SS i  6.用单位立方块搭一个几何体,使其正视图和侧视图如图所示, 则该几何体体积的最大值为 A.28 B.21 C.20 D.19 7.函数   2 ln xf x x x 的图像大致为 第 5 题 正视图 侧视图 第 6 题 第 12 题 第 14 题 8.已知抛物线 2: 2 ( 0)C y px p的焦点为 F ,点 , ( 0)4 pA a a 在 C 上, 3AF  ,若直 线 AF 与C 交于另一点 B ,则 AB 的值是 A.12 B.10 C.9 D.45 9.设双曲线 22 22C 1( 0, 0)xy abab   : 的左焦点为 F ,直线 4 3 20 0xy   过点 F 且与双曲 线 C 在第二象限的交点为 ,PO为原点,| | | |OP OF ,则双曲线C 的离心率为 A.5 B. 5 C. 5 3 D. 5 4 10.已知  fx 是函数  fx的导函数,且对任意的实数 x 都有      21xf x e x f x    ,  02f  ,则不等式   4 xf x e 的解集为 A. 2,3 B. 3,2 C.   , 3 2,  U D.   , 2 3,  U 11.已知在锐角 ABC 中,角 ,,A B C 的对边分别为 ,,abc,若 2 cos cosb C c B ,则 1 1 1 tan tan tanA B C的最小值为 A. 27 3 B. 5 C. 7 3 D. 25 12.数学中有许多形状优美、寓意美好的曲线,曲线 22C : x y 1 x y   就是其中之一(如图), 给出下列三个结论: ①曲线 C 恰好经过 6 个整点(即横、纵坐标均为整数的点); ②曲线 C 上任意一点到原点的距离都不超过 ; ③曲线 C 所围成的“心形”区域的面积小于 3; 其中,所有正确结论的序号是 A.① B.② C.①② D.①②③ 第 II 卷(非选择题,共 90 分) 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分. 13.某家庭电话在家中有人时,打进的电话响第一声时被接的概率为0.1,响第二声时被接的概率为 0.3,响第三声时被接的概率为 0.4 ,响第四声时被接的概率为 0.1,那么 电话在响前 4 声内被接的概率是 . 14.如图,圆C (圆心为C )的一条弦 AB 的长为 2,则 AB AC uuur uuur =_____________. 15.我们听到的美妙弦乐,不是一个音在响,而是许多个纯音的合成,称为复合音.复合音 的响度是各个纯音响度之和.琴弦在全段振动,产生频率为 f 的纯音的同时,其二分之一 部分也在振动,振幅为全段的 1 2 ,频率为全段的 2 倍;其三分之一部分也在振动,振幅为 全段的 1 3 ,频率为全段的 3 倍;其四分之一部分也在振动,振幅为全段的 1 4 ,频率为全段的 4 倍;之后部分均忽略不计.已知全段纯音响度的数学模型是函数 1 sinyt (t 为时间, 1y 为 响度),则复合音响度数学模型的最小正周期是 . 16.已知三棱锥 A BCD 的棱长均为 6,其内有 n 个小球,球 1O 与三棱锥 A BCD 的四个面 都相切,球 2O 与三棱锥 A BCD 的三个面和球 1O 都相切,如此类推,…,球 nO 与三棱锥 A BCD 的三个面和球 1nO  都相切( 2n … ,且 n N ),则球 1O 的体积等于__________, 球 nO 的表面积等于__________.(本题第一空 2 分,第二空 3 分) 三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求 作答. (一)必考题:共 60 分. 17.(本小题满分 12 分) nS 为数列{}na 的前 n 项和,已知 0na  , 2 2 4 3n n na a S   . (1)求数列{}na 的通项公式; (2)设 1 1 n nn b aa  ,求数列{}nb 的前 n 项和. 18.(本小题满分 12 分) 如图所示的几何体中, 1 1 1ABC A B C 为三棱柱,且 1AA  平面 ABC, 1AA AC ,四边形 ABCD 为平行四边形, 2AD CD , 60ADC  . (1)求证: AB  平面 11ACC A ; (2)若 2CD  ,求四棱锥 1 1 1C A B CD 的体积. 19.(本小题满分 12 分) 某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原 料成本 y (元)与生产该产品的数量 x (千件)有关,经统计得到如下 数据: x 1 2 3 4 5 6 7 8 y 112 61 44.5 35 30.5 28 25 24 根据以上数据,绘制了散点图.观察散点图,两个变量不具有线性 相关关系,现考虑用反比例函数模型 byax和指数函数模型 dxy ce 分 别对两个变量的关系进行拟合, 已求得:用指数函数模型拟合的回归方程为 $ 0.296.54 xye ,ln y 与 的相关系数 1 0.94r  ; 8 1 =183.4ii i uy   , =0.34u , 2 =0.115u , 8 2 1 =1.53i i u   , 8 1 360i i y   , 8 2 1 22385.5i i y   , (其中 1 , 1,2,3, ,8i i uix L ); (1)用反比例函数模型求 关于 的回归方程; (2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到 0.01),并用其估计 产量为 10 千件时每件产品的非原料成本. 参考数据: 0.61 6185.5 61.4, 2 0.135e  参考公式:对于一组数据 11,u  , 22,u  ,…, ,nnu  ,其回归直线 ˆ u   )) 的斜 率和截距的最小二乘估计分别为: µ 1 22 1 n ii i n i i u nu u nu          , µ µu   ,相关系数 1 2222 11 n ii i nn ii ii u nu r u nu n                . 20.(本小题满分 12 分) 椭圆 22 22: 1 ( 0)xyE a bab    的离心率是 5 3 ,过点 (0,1)P 做斜率为 k 的直线 l ,椭圆 E 与直线 l 交于 ,AB两点,当直线 l 垂直于 y 轴时| | 3 3AB  , (1)求椭圆 E 的方程; (2)当 k 变化时,在 x 轴上是否存在点 ( ,0)Mm ,使得 AMB 是以 AB 为底的等腰三角形, 若存在,求出 m 的取值范围;若不存在,说明理由. 21.(本小题满分 12 分) 已知函数   1 2sin , 0f x x x x    , (1)求  fx的最小值; (2)证明:   2xf x e . (二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答,如果多做,则按所做的 第一题计分. 22.[选修 4―4:坐标系与参数方程](10 分) 在直角坐标系 xOy 中,直线l 的参数方程为 13,2 3 2 xt yt       ( t 为参数),曲线 C 的参数 方程为 3cos , 3 3sin x y      ( 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系, (1)求曲线C 的极坐标方程; (2)已知点 P 的极坐标为 ( 3,π) ,l 与曲线C 交于 ,AB两点,求 11 | | | |PA PB  . 23.[选修 4—5:不等式选讲](10 分) 已知 ,,abc为正数,且满足 1abc  ,证明: (1) 2 2 2 1 1 1abc abc   „ ; (2) 1 1 1 12 2 2abc   „ . 福州市 2020 届高三文科数学 5 月调研卷参考答案 (满分:150 分 考试时间:120 分钟) 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分. 1.A 2.C 3.B 4.D 5.D 6.D 7.A 8.C 9.A 10.B 11.A 12.C 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分. 13.0.9 14.2 15. 2 16. 6 , 1 6 4n  三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤. (一)必考题:共 60 分. 17.(本小题满分 12 分) 【 解 析 】( 1 )由 2 2 4 3n n na a S  , 可 知 2 1 1 12 4 3n n na a S     , 可 得 22 1 1 12 2 4n n n n na a a a a      ,即 22 1 1 1 12( ) ( )( )n n n n n n n na a a a a a a a         , ·························································································· 3 分 由于 0na  ,可得 1 2nnaa . ··············································································································· 4 分 又 2 1 1 12 4 3a a a   ,解得 1 1a  (舍去),或 1 3a  , ·········································································· 5 分 所以数列{}na 是首项为3,公差为 2 的等差数列,可得 21nan. ····················································· 6 分 (2)由 可知 1 1 1 1 1 1()(2 1)(2 3) 2 2 1 2 3n nn b a a n n n n        , ····································· 8 分 数列{}nb 的前 n 项和为 nT ,则 12 1 1 1 1 1 1 1[( ) ( ) ( )]2 3 5 5 7 2 1 2 3nnT b b b nn          LL ····························································· 10 分 1 1 1()2 3 2 3n ····································································································································· 11 分 3(2 3) n n  . ········································································································································ 12 分 18.(本小题满分 12 分) 【解析】(1)证明:Q 四边形 ABCD 为平行四边形, 2AD CD , 60ADC  ,由余弦定理可得: 3AC CD , 2 2 2AD AC CD   ································································································ 2 分 90ACD BAC   , AB AC , ································································································· 3 分 Q 1 1 1ABC A B C 为三棱柱,且 1AA  平面 ABC, ···················································································· 4 分 AB Q 平面 ABC 1AB AA ·················································································································· 5 分 1 AAC AA Q , AB平面 11ACC A . ································································································ 6 分 (2)连结 1AC, ································································································································ 7 分 AB Q 平面 11ACC A , //CD AB, CD\^平面 11CC A , ······································································· 9 分  1 1 1 1 1 1 1 1C A B CD D CC A C A B CV V V   1 1 1 1 11 11 33A C C A B CCD S CC S     △ △ ························································· 10 分 1 1 1 12 2 3 2 3 2 3 2 2 33 2 3 2          8 . 所以四棱锥 1 1 1C A B CD 的体积为 8 ········································································································ 12 分 19.(本小题满分 12 分) 【解析】(1)令 1u x ,则 byax可转化为 y a bu ,································································ 1 分 因为 360 458y ,所以 8 22 1 8 1 8 183.4 8 0.34 45 61 1001.53 8 0.115 0.6 ˆ 18 i ii i i u y uy b uu            , ························· 4 分 则 45ˆˆ 100 0.34 11a y bu      ,所以 11 100ˆyu , ································································ 5 分 所以 y 关于 x 的回归方程为 10011ˆy x ; ···························································································· 6 分 (2) 与 1 x 的相关系数为: 2 88 2 2 2 2 11 8 1 8 88 ii ii ii i u y uy r uu y y             61 61 0.9961.40.61 6185.5     ,············································· 9 分 因为 12rr ,所以用反比例函数模型拟合效果更好, ········································································ 10 分 把 10x  代入回归方程: , 100 11 2110y   ) (元), ················································· 11 分 所以当产量为 10 千件时,每件产品的非原料成本估计为 21 元. ······················································· 12 分 20.(本小题满分 12 分) 【解析】(1)由已知椭圆过点 33,12    ,可得 22 2 2 2 27 1 14 5 3 ab a b c c a        , ······························································ 3 分 解得 229, 4ab所以椭圆的 E 方程为 22 194 xy. ·············································································· 5 分 (2)设 1 1 2 2( , ), ( , )A x y B x y , AB 的中点 00( , )C x y 由 22 1 194 y kx xy   消去 y 得 22(4 9 ) 18 27 0k x kx    ,所以 12 0 0 022 94, 12 4 9 4 9 xx kx y kxkk      . ··································· 7 分 当 0k  时,设过点C 且与 l 垂直的直线方程 22 1 9 4()4 9 4 9 kyxk k k    ··········································· 8 分 将 ( ,0)Mm 代入得: 5 4 9 m kk   ············································································································· 9 分 若 0k  ,则 449 2 9 =12kkkk   , 若 0k  ,则 4 4 49 [ ( 9 )] 2 ( 9 )= 12k k kk k k           所以 5 012 m   或 50 12m ················································································································· 11 分 当 0k  时, 0m  综上所述,存在点 M 满足条件,m 取值范围是 55 12 12m   ································································ 12 分 21.(本小题满分 12 分) 【解析】(1)   1 2cosf x x  ,令   0fx  得 1cos 2x  ······································································ 1 分 当 0, 3x  时,   0fx  ,  fx单调递减, 当 ,3x   时,   0fx  ,  fx单调递增, ······················································································ 3 分 故在 0, 上,  fx的极小值为 1333f    ··············································································· 4 分 当 x  时,   1 2 1 3f x f         故 的最小值为 ···································································································· 5 分 (2)要证当 0x  时,   2xf x e ,即证当 0x  时,     21 2sin 1xg x x x e    ······························· 6 分        2 2 22 1 2sin 1 2cos 3 2 4sin 2cosx x xg x x x e x e x x x e          ················································ 7 分 令   sinh x x x ,则   1 cos 0h x x    ,  hx在 0, 上单调递增, ············································· 8 分 故    00h x h,即 sinxx ················································································································· 9 分 所以  3 2 4sin 2cos 3 2sin 4sin 2cos 3 2 sin cos 3 2 2 sin 04x x x x x x x x x               ·································································································································································· 10 分 所以   0gx  ,  gx在 上单调递增, 故    01g x g, ································································································································· 11 分 故当 时, . ··················································································································· 12 分 (二)选考题:共 10 分.考生在第 22、23 题中任选一题作答,如果多做,则按所做的第 一题计分. 22.【解析】(1)曲线C 的普通方程为 22( 3) 9xy   ,即 226x y y, ··········································· 3 分 所以 2 6 sin   ,即 6sin ,所以曲线C 的极坐标方程为 . ········································ 5 分 (2)将直线l 的参数方程代入到 中,得 2 4 3 3 0tt   . ················································· 6 分 设 ,AB两点对应的参数分别为 12,tt,则 1243tt , 12 3tt  , ···························································· 7 分 因为点 P 的极坐标为 ( 3,π) ,所以点 的直角坐标为( 3,0) , ························································· 8 分 所以 2 1 2 1 2 1 2 1 2 1 2 1 21 2 1 2 | | | | ( | | | |) | | | | 2 | |1 1 1 1 | | | || | | | | | | | | | t t t t t t t t t t t tPA PB t t t t          12( 0, 0)tt 44 3 2 3 6 3 1233    . ···································································· 10 分 23.【解析】证明:(1)由条件 1abc  得 22 1 1 122ca b ab   ,当且仅当 ab 时等号成立 22 1 1 122ab c bc   ,当且仅当bc 时等号成立 22 1 1 122bc a ca   ,当且仅当ca 时等号成立 ············································································· 3 分 以上三个不等式相加可得: 2 2 2 1 1 12 2( )abcabc      ,当且仅当 abc时等号成立 ················ 4 分 得证 2 2 2 1 1 1abc abc   „ . ·················································································································· 5 分 (2)由条件 1abc  得 1 1 1 4 31 ( )2 2 2 (2 )(2 )(2 ) (2 )(2 )(2 ) ab bc ca abc ab bc ca a b c a b c a b c                    , ········································· 8 分 由三元基本不等式得 333ab bc ca ab bc ca    … (等号成立当且仅当 1abc   ), 从而得证 1 1 1 12 2 2abc   „ . ································································································· 10 分

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料