福州市 2020 届高三文科数学 5 月调研卷
(满分:150 分 考试时间:120 分钟)
第 Ⅰ 卷(选择题,共 60 分)
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有
一项是符合题目要求的.
1. 复数 ||
2
iz i
,则复数 z 在复平面内对应的点位于
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.已知全集为 R ,集合 2, 1,0,1,2A , 1 02
xBxx
,则 UA C BI 的元素个数为
A.1 B.2 C.3 D.4
3.已知 0.2 0.3
2log 0.2, 2 , 0.2a b c ,则
A. abc B. a c b C.c a b D.b c a
4.某学生 5 次考试的成绩(单位:分)分别为 85,67, m ,80,93,其中
0m ,若该学生在这 5 次考试中成绩的中位数为 80,则得分的平均数
不可能为
A.70 B.75 C.80 D.85
5.如图给出的是计算 1 1 11 3 5 2019 L 的值的一个程序框图,
则图中空白框中应填入
A. 1
23SS i B. 1
21SS i
C. 1
1SSi D. 1
21SS i
6.用单位立方块搭一个几何体,使其正视图和侧视图如图所示,
则该几何体体积的最大值为
A.28 B.21 C.20 D.19
7.函数 2
ln xf x x x 的图像大致为
第 5 题
正视图 侧视图
第 6 题 第 12 题
第 14 题
8.已知抛物线 2: 2 ( 0)C y px p的焦点为 F ,点 , ( 0)4
pA a a
在 C 上, 3AF ,若直
线 AF 与C 交于另一点 B ,则 AB 的值是
A.12 B.10 C.9 D.45
9.设双曲线
22
22C 1( 0, 0)xy abab : 的左焦点为 F ,直线 4 3 20 0xy 过点 F 且与双曲
线 C 在第二象限的交点为 ,PO为原点,| | | |OP OF ,则双曲线C 的离心率为
A.5 B. 5 C. 5
3 D. 5
4
10.已知 fx 是函数 fx的导函数,且对任意的实数 x 都有 21xf x e x f x ,
02f ,则不等式 4 xf x e 的解集为
A. 2,3 B. 3,2 C. , 3 2, U D. , 2 3, U
11.已知在锐角 ABC 中,角 ,,A B C 的对边分别为 ,,abc,若 2 cos cosb C c B ,则
1 1 1
tan tan tanA B C的最小值为
A. 27
3
B. 5 C. 7
3
D. 25
12.数学中有许多形状优美、寓意美好的曲线,曲线 22C : x y 1 x y 就是其中之一(如图),
给出下列三个结论:
①曲线 C 恰好经过 6 个整点(即横、纵坐标均为整数的点);
②曲线 C 上任意一点到原点的距离都不超过 ;
③曲线 C 所围成的“心形”区域的面积小于 3;
其中,所有正确结论的序号是
A.① B.② C.①② D.①②③
第 II 卷(非选择题,共 90 分)
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
13.某家庭电话在家中有人时,打进的电话响第一声时被接的概率为0.1,响第二声时被接的概率为 0.3,响第三声时被接的概率为 0.4 ,响第四声时被接的概率为 0.1,那么
电话在响前 4 声内被接的概率是 .
14.如图,圆C (圆心为C )的一条弦 AB 的长为 2,则 AB AC
uuur uuur =_____________.
15.我们听到的美妙弦乐,不是一个音在响,而是许多个纯音的合成,称为复合音.复合音
的响度是各个纯音响度之和.琴弦在全段振动,产生频率为 f 的纯音的同时,其二分之一
部分也在振动,振幅为全段的 1
2
,频率为全段的 2 倍;其三分之一部分也在振动,振幅为
全段的 1
3
,频率为全段的 3 倍;其四分之一部分也在振动,振幅为全段的 1
4
,频率为全段的
4 倍;之后部分均忽略不计.已知全段纯音响度的数学模型是函数 1 sinyt (t 为时间, 1y 为
响度),则复合音响度数学模型的最小正周期是 .
16.已知三棱锥 A BCD 的棱长均为 6,其内有 n 个小球,球 1O 与三棱锥 A BCD 的四个面
都相切,球 2O 与三棱锥 A BCD 的三个面和球 1O 都相切,如此类推,…,球 nO 与三棱锥
A BCD 的三个面和球 1nO 都相切( 2n … ,且 n N ),则球 1O 的体积等于__________,
球 nO 的表面积等于__________.(本题第一空 2 分,第二空 3 分)
三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.第
17~21 题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求
作答.
(一)必考题:共 60 分.
17.(本小题满分 12 分)
nS 为数列{}na 的前 n 项和,已知 0na , 2 2 4 3n n na a S .
(1)求数列{}na 的通项公式;
(2)设
1
1
n
nn
b aa
,求数列{}nb 的前 n 项和.
18.(本小题满分 12 分)
如图所示的几何体中, 1 1 1ABC A B C 为三棱柱,且 1AA
平面 ABC, 1AA AC ,四边形 ABCD 为平行四边形,
2AD CD , 60ADC .
(1)求证: AB 平面 11ACC A ;
(2)若 2CD ,求四棱锥 1 1 1C A B CD 的体积.
19.(本小题满分 12 分)
某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原
料成本 y (元)与生产该产品的数量 x (千件)有关,经统计得到如下
数据:
x 1 2 3 4 5 6 7 8
y 112 61 44.5 35 30.5 28 25 24
根据以上数据,绘制了散点图.观察散点图,两个变量不具有线性
相关关系,现考虑用反比例函数模型 byax和指数函数模型 dxy ce 分
别对两个变量的关系进行拟合,
已求得:用指数函数模型拟合的回归方程为 $ 0.296.54 xye ,ln y 与
的相关系数 1 0.94r ;
8
1
=183.4ii
i
uy
, =0.34u , 2 =0.115u ,
8
2
1
=1.53i
i
u
,
8
1
360i
i
y
,
8
2
1
22385.5i
i
y
, (其中 1 , 1,2,3, ,8i
i
uix L );
(1)用反比例函数模型求 关于 的回归方程;
(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到 0.01),并用其估计
产量为 10 千件时每件产品的非原料成本.
参考数据: 0.61 6185.5 61.4, 2 0.135e
参考公式:对于一组数据 11,u , 22,u ,…, ,nnu ,其回归直线 ˆ u
)) 的斜
率和截距的最小二乘估计分别为: µ 1
22
1
n
ii
i
n
i
i
u nu
u nu
, µ µu ,相关系数
1
2222
11
n
ii
i
nn
ii
ii
u nu
r
u nu n
.
20.(本小题满分 12 分) 椭圆
22
22: 1 ( 0)xyE a bab 的离心率是 5
3
,过点 (0,1)P 做斜率为 k 的直线 l ,椭圆 E
与直线 l 交于 ,AB两点,当直线 l 垂直于 y 轴时| | 3 3AB ,
(1)求椭圆 E 的方程;
(2)当 k 变化时,在 x 轴上是否存在点 ( ,0)Mm ,使得 AMB 是以 AB 为底的等腰三角形,
若存在,求出 m 的取值范围;若不存在,说明理由.
21.(本小题满分 12 分)
已知函数 1 2sin , 0f x x x x ,
(1)求 fx的最小值;
(2)证明: 2xf x e .
(二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答,如果多做,则按所做的
第一题计分.
22.[选修 4―4:坐标系与参数方程](10 分)
在直角坐标系 xOy 中,直线l 的参数方程为
13,2
3
2
xt
yt
( t 为参数),曲线 C 的参数
方程为 3cos ,
3 3sin
x
y
( 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,
(1)求曲线C 的极坐标方程;
(2)已知点 P 的极坐标为 ( 3,π) ,l 与曲线C 交于 ,AB两点,求 11
| | | |PA PB
.
23.[选修 4—5:不等式选讲](10 分)
已知 ,,abc为正数,且满足 1abc ,证明:
(1) 2 2 2
1 1 1abc abc „ ;
(2) 1 1 1 12 2 2abc „ .
福州市 2020 届高三文科数学 5 月调研卷参考答案
(满分:150 分 考试时间:120 分钟)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.
1.A 2.C 3.B 4.D 5.D 6.D 7.A 8.C 9.A
10.B 11.A 12.C
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
13.0.9 14.2 15. 2 16. 6 , 1
6
4n
三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.
(一)必考题:共 60 分.
17.(本小题满分 12 分)
【 解 析 】( 1 )由 2 2 4 3n n na a S , 可 知 2
1 1 12 4 3n n na a S , 可 得
22
1 1 12 2 4n n n n na a a a a ,即
22
1 1 1 12( ) ( )( )n n n n n n n na a a a a a a a , ·························································································· 3 分
由于 0na ,可得 1 2nnaa . ··············································································································· 4 分
又 2
1 1 12 4 3a a a ,解得 1 1a (舍去),或 1 3a , ·········································································· 5 分
所以数列{}na 是首项为3,公差为 2 的等差数列,可得 21nan. ····················································· 6 分
(2)由 可知
1
1 1 1 1 1()(2 1)(2 3) 2 2 1 2 3n
nn
b a a n n n n
, ····································· 8 分
数列{}nb 的前 n 项和为 nT ,则
12
1 1 1 1 1 1 1[( ) ( ) ( )]2 3 5 5 7 2 1 2 3nnT b b b nn LL ····························································· 10 分
1 1 1()2 3 2 3n ····································································································································· 11 分
3(2 3)
n
n
. ········································································································································ 12 分
18.(本小题满分 12 分)
【解析】(1)证明:Q 四边形 ABCD 为平行四边形, 2AD CD , 60ADC ,由余弦定理可得: 3AC CD , 2 2 2AD AC CD ································································································ 2 分
90ACD BAC , AB AC , ································································································· 3 分
Q 1 1 1ABC A B C 为三棱柱,且 1AA 平面 ABC, ···················································································· 4 分
AB Q 平面 ABC 1AB AA ·················································································································· 5 分
1 AAC AA Q , AB平面 11ACC A . ································································································ 6 分
(2)连结 1AC, ································································································································ 7 分
AB Q 平面 11ACC A , //CD AB, CD\^平面 11CC A , ······································································· 9 分
1 1 1 1 1 1 1 1C A B CD D CC A C A B CV V V
1 1 1 1 11
11
33A C C A B CCD S CC S △ △ ························································· 10 分
1 1 1 12 2 3 2 3 2 3 2 2 33 2 3 2 8 .
所以四棱锥 1 1 1C A B CD 的体积为 8 ········································································································ 12 分
19.(本小题满分 12 分)
【解析】(1)令 1u x ,则 byax可转化为 y a bu ,································································ 1 分
因为 360 458y ,所以 8
22
1
8
1
8 183.4 8 0.34 45 61 1001.53 8 0.115 0.6
ˆ
18
i
ii
i
i
u y uy
b
uu
, ························· 4 分
则 45ˆˆ 100 0.34 11a y bu ,所以 11 100ˆyu , ································································ 5 分
所以 y 关于 x 的回归方程为 10011ˆy x ; ···························································································· 6 分
(2) 与 1
x
的相关系数为:
2 88
2 2 2 2
11
8
1
8
88
ii
ii
ii
i
u y uy
r
uu y y
61 61 0.9961.40.61 6185.5
,············································· 9 分
因为 12rr ,所以用反比例函数模型拟合效果更好, ········································································ 10 分
把 10x 代入回归方程: , 100 11 2110y ) (元), ················································· 11 分
所以当产量为 10 千件时,每件产品的非原料成本估计为 21 元. ······················································· 12 分
20.(本小题满分 12 分) 【解析】(1)由已知椭圆过点 33,12
,可得
22
2 2 2
27 1 14
5
3
ab
a b c
c
a
, ······························································ 3 分
解得 229, 4ab所以椭圆的 E 方程为
22
194
xy. ·············································································· 5 分
(2)设 1 1 2 2( , ), ( , )A x y B x y , AB 的中点 00( , )C x y 由 22
1
194
y kx
xy
消去 y 得
22(4 9 ) 18 27 0k x kx ,所以 12
0 0 022
94, 12 4 9 4 9
xx kx y kxkk
. ··································· 7 分
当 0k 时,设过点C 且与 l 垂直的直线方程 22
1 9 4()4 9 4 9
kyxk k k ··········································· 8 分
将 ( ,0)Mm 代入得:
5
4 9
m
kk
············································································································· 9 分
若 0k ,则 449 2 9 =12kkkk ,
若 0k ,则 4 4 49 [ ( 9 )] 2 ( 9 )= 12k k kk k k
所以 5 012 m 或 50 12m ················································································································· 11 分
当 0k 时, 0m
综上所述,存在点 M 满足条件,m 取值范围是 55
12 12m ································································ 12 分
21.(本小题满分 12 分)
【解析】(1) 1 2cosf x x ,令 0fx 得 1cos 2x ······································································ 1 分
当 0, 3x
时, 0fx , fx单调递减,
当 ,3x
时, 0fx , fx单调递增, ······················································································ 3 分
故在 0, 上, fx的极小值为 1333f
··············································································· 4 分
当 x 时, 1 2 1 3f x f
故 的最小值为 ···································································································· 5 分 (2)要证当 0x 时, 2xf x e ,即证当 0x 时, 21 2sin 1xg x x x e ······························· 6 分
2 2 22 1 2sin 1 2cos 3 2 4sin 2cosx x xg x x x e x e x x x e ················································ 7 分
令 sinh x x x ,则 1 cos 0h x x , hx在 0, 上单调递增, ············································· 8 分
故 00h x h,即 sinxx ················································································································· 9 分
所以
3 2 4sin 2cos 3 2sin 4sin 2cos 3 2 sin cos 3 2 2 sin 04x x x x x x x x x
·································································································································································· 10 分
所以 0gx , gx在 上单调递增,
故 01g x g, ································································································································· 11 分
故当 时, . ··················································································································· 12 分
(二)选考题:共 10 分.考生在第 22、23 题中任选一题作答,如果多做,则按所做的第
一题计分.
22.【解析】(1)曲线C 的普通方程为 22( 3) 9xy ,即 226x y y, ··········································· 3 分
所以 2 6 sin ,即 6sin ,所以曲线C 的极坐标方程为 . ········································ 5 分
(2)将直线l 的参数方程代入到 中,得 2 4 3 3 0tt . ················································· 6 分
设 ,AB两点对应的参数分别为 12,tt,则 1243tt , 12 3tt , ···························································· 7 分
因为点 P 的极坐标为 ( 3,π) ,所以点 的直角坐标为( 3,0) , ························································· 8 分
所以
2
1 2 1 2 1 2 1 2
1 2 1 21 2 1 2
| | | | ( | | | |) | | | | 2 | |1 1 1 1
| | | || | | | | | | | | |
t t t t t t t t
t t t tPA PB t t t t
12( 0, 0)tt
44 3 2 3 6 3 1233
. ···································································· 10 分
23.【解析】证明:(1)由条件 1abc 得
22
1 1 122ca b ab ,当且仅当 ab 时等号成立
22
1 1 122ab c bc ,当且仅当bc 时等号成立 22
1 1 122bc a ca ,当且仅当ca 时等号成立 ············································································· 3 分
以上三个不等式相加可得: 2 2 2
1 1 12 2( )abcabc
,当且仅当 abc时等号成立 ················ 4 分
得证 2 2 2
1 1 1abc abc „ . ·················································································································· 5 分
(2)由条件 1abc 得
1 1 1 4 31 ( )2 2 2 (2 )(2 )(2 ) (2 )(2 )(2 )
ab bc ca abc ab bc ca
a b c a b c a b c
, ········································· 8 分
由三元基本不等式得 333ab bc ca ab bc ca … (等号成立当且仅当 1abc ),
从而得证 1 1 1 12 2 2abc „ . ································································································· 10 分