书书书
!"#$[% 1 &]
2019—2020$'()'*+,-.())
!"#$%&'(
1.【/0】C
【12】34 A={(x,y) x=05 x=2,y∈R},B={(x,y) y2=2x},67 A∩B={(0,0),(2,
2),(2,-2)},89 C.
2.【/0】B
【12】(a+2i)2=a2-4+4ai,34(a+2i)2(a∈R):; a=2
3,b=3
4,?@A A,> a=-2,b=-1
2,?@A B,> a=-2,b=1
2,?@A C,=
a<b<1?B(a-1)(b-1)>0,CDB ab+1>a+b,89 D.
4.【/0】D
【12】E x2+y2-2x+4y=0FGHIJ C:x2
2m- y2
m+1=1(m>0)KLMNOJPQ,RES
(1,-2)TNOJ y=- m+1
2槡m xU,67 m+1
2槡m =2,m=1
7,89 D.
5.【/0】A
【12】34 a,b: V W X Y,a+b=(槡2,-1),Z [ \ ] B 2a· b=1,6 7 a-b =
a2-2a·b+b槡 2 =1,89 A.
6.【/0】D
【12】=^_B(a2+a10)(2a3+a9)=2a6(a3+a3+a9)=2a6(a3 +2a6)=4(a3 +4)=12,?B
a3=-1,67 S5=5a3=-5,89 D.
7.【/0】C
【12】` A,B,C,D,Ea4 2b(Lb 2c,Lb 3c),def:(AB,CDE),(AC,BDE),(AD,
BCE),(AE,BCD),(BC,ADE),(BD,ACE),(BE,ACD),(CD,ABE),(CE,ABD),(DE,ABC),g
10h,A,BTiLjklKdef:(AB,CDE),(CD,ABE),(CE,ABD),(DE,ABC),g 4h,6
76mno P=4
10=2
5,89 C.
8.【/0】C
【12】= f(x)=
1,x>0
0,x=0
-1,x{ <0
,g(x)=sinπx,?Bp x>0q,g(f(x))=g(1)=sinπ=0,p x=0
q,g(f(x))=g(0)=sin0=0,p x<0q g(f(x))=g(-1)=sin(-π)=0,67 Ars;p x
>0q,f(x)=1,f(f(x))=f(1)=1,f(f(x))=f(x)tu,p x=0q,f(0)=0,f(f(0))=f(0)=!"#$[% 2 &]
0,f(f(x))=f(x)tu,p x<0q,f(x)=-1,f(f(x))=f(-1)=-1,f(f(x))=f(x)tu,6
7 Brs,= f(3
2)g(3
2)=-1,?v Cwx,= g(x)≥ -1,g(x)+2≥1,?v f(g(x)+2)=1
rs,89 C.
9.【/0】A
【12】= f(x)+f(-x)=2?B 2ax2+2b=2,67 a=0,b=1,f(x)=x3 -3x+1,f′(x)=3x2 -
3,f(1)=-1,f′(1)=0,67 f(x)KyzT x=1{K|J]}4 y=-1,89 A.
10.【/0】D
【12】=}~y?v,nc#,mc#,
“)j,)c
aLj”,#4 s,R s=3m+n
3,67① s=3m+n
3,p s=100qd}~,
n,89 D.
11.【/0】C
【12】> BC O,BO F, OD,OE,FE,DF,R∠ODE:J DE AC6t.
AB=4,R OD=2,OF=1,OE=2,DF 槡= 3,EF= OE2+OF槡 2 槡= 5,DE= DF2+EF槡 2 槡=2 2,6
7∠ODE=π
4,J DE AC6tK4槡2
2,89 C.
!"
#
$
%
&'
12.【/0】B
【12】= AB⊥x?B →AB· →AF= →AB 2,67 →AB =2b
3,
→AB
→FB
=tan∠BFA=b
c,67
→FB =2c
3,67A(5c
3,-2b
3), ¡E CK]}B25c2
9a2 +4
9=1,67 e=槡5
5,89 B.
13.【/0】[1
2,+∞)
【12】p x≥1q,f(x)=x2≥1,¢ a=0,x<1q,f(x)=0,f(x)K£¤: R;¢ a<0,x<1q,f(x)
>2a,f(x)K£¤: R,¢ a>0,x<1q,f(x)<2a,67p 2a≥1q,f(x)K£4 R,67 aK>
¥¦:[1
2,+∞).
14.【/0】9
【12】=a2
n+1
an
=2an+an+1B a2
n+1-anan+1-2a2
n=0,(an+1+an)(an+1-2an)=0,34 an>0,
67 an+1-2an=0,an+1=2an,an=a2·2n-2=2n-2,a8 =64,a9 =128,67§ an>100K¨K
n4 9.
15.【/0】 槡23π!"#$[% 3 &]
【12】© f(x)Kyz,=yz?v槡3
2≤a<1,x1+x2=2×π
6=π
3,x2 +x3 =2×2π
3 =4π
3,x3 +
x4=2×7π
6 =7π
3,ª«B x1+2x2+2x3+x4=4π,67 a(x1+2x2+2x3+x4)K¨4 槡23π.
16.【/0】槡7
2
【12】=^_?B AD=DC=1,AB⊥AD,34 AP⊥AC,67)¬ P-ACD,AP⊥®¯
ADC,`)¬P-ACD°t)¬±,R²)¬±K³´:)¬ P-ACDK³´,´S
:)¬±Uµ®¯³EESJK,®¯³E¶· r=1
2· 槡3
sin120°=1, AP 槡= 3,6
7)¬ P-ACD³´¶· R= 12+(槡3
2)槡 2 =槡7
2.
17.1:(1)=#¸¹-#?B 珋x=3,∑
5
i=1
(xi-珋x)2=10, ∑
5
i=1
(yi-珋y)槡 2≈10.70,
=∑
5
i=1
xi=15,∑
5
i=1
yi=74.6,?B 珋x=3,珋y=14.92,
67∑
5
i=1
xiyi-5珋x珋y=190.2-5×3×14.92=-33.6,
67 r≈ -33.6
10.70×3.16≈ -0.99,
34 y xKªFº#O»4 -0.99,¼½ y xKªF}¾ªp(,¿À?7ÁJÂÃÄÅ
ÆÇÈ y xKFº.(6a)
(2)^b=
∑
5
i=1
xiyi-5珋x珋y
∑
5
i=1
x2
i-5珋x2
= -33.6
55-5×9=-3.36,
R ^a=珋y-^b珋x=14.92+3.36×3=25,
67 yFG xKÃÄ]} ^y=-3.36x+25.(10a)
p x=6q,^y=-3.36×6+25=4.84,
67ÉÊ 2014'tuKËÌÍÎËÌ6ÏÐÑ4 4.84%.(12a)
18.1:(1)= c(tanA
tanC+1)-9b=0¸rÒÓ?B
sinC·sinAcosC+sinCcosA
sinCcosA -9sinB=0,(2a)
sin(A+C)
cosA -9sinB=0,
34 sin(A+C)=sin(π-B)=sinB,Ô sinB≠0,
67 cosA=1
9.(4a)
(2)34 cosA=1
9,67 sinA= 1-cos2槡 A= 槡45
9 ,!"#$[% 4 &]
34 AD\a A,67 sin∠BAD=sin∠CAD= 1-cosA
槡 2 =
1-1
9
槡2 =2
3,
= S△ABC =S△ADB +S△ADC,?B 1
2bcsinA=1
2c·ADsin∠BAD+1
2b·ADsin∠CAD,
1
2bc· 槡45
9 =1
2c·槡5· 2
3+1
2b·槡5· 2
3,ÕÓB 2
3bc=b+c,
67 1
b+1
c=2
3.(12a)
19.1:(1) AC1K4 F, BE ACÖG G,R G4 AC,
DF,FG,R FG∥CC1,Ô FG=1
2CC1. D4 BB1K,
67 DB∥FG,Ô DB=FG,
67×[Ø BDFG4\Ù×[Ø,67 BG∥DF,
!
"
#
$
%
%!
!!
#!
&
'
34 AA1⊥®¯ ABC,67\¯ ABC⊥\¯ ACC1A1,
34 AB=BC,G4 AC,67 BG⊥\¯ ACC1A1,
67 DF⊥\¯ ACC1A1. DF\¯ AC1D,
67\¯ AC1D⊥\¯ ACC1A1.(6a)
(2)=(1)v BE∥DF,67 E,BÚ\¯ ADC1KÛܪÝ,
67 V)¬E-ADC1 =V)¬B-ADC1 =V)¬A-BDC1.
= AB=BC=2,AC 槡=22,?B AB⊥BC,
34\¯ ABC⊥\¯ BCC1B1,AB⊥\¯ BCC1B1,
△BDC1K¯Þ S=1
2×1×2=1,
67 V)¬A-BDC1 =1
3×AB×S=1
3×2×1=2
3,
67)¬ E-ADC1KßÞ4 2
3.(12a)
20.1:(1)y2=2px y=x+1àuB y2-2py+2p=0
34áâJ CJ y=x+1ãfLjäg,
67 Δ=(2p)2-8p=0,p=2,
67áâJ CK]}4 y2=4x.(3a)
(2)① A(y2
1
4,y1),B(y2
2
4,y2),R kOA+kOB =4
y1
+4
y2
=1,
67 y1y2
y1+y2
=4, kAB =y1-y2
y2
1
4-y2
2
4
= 4
y1+y2
,
67J ABK]}4 y-y1= 4
y1+y2
(x-y2
1
4),!"#$[% 5 &]
y= 4
y1+y2
x+y1- y2
1
y1+y2
= 4
y1+y2
x+ y1y2
y1+y2
= 4
y1+y2
x+4,
p x=0q y=4,67J ABåÒ(0,4).(7a)
② A(y2
1
4,y1),B(y2
2
4,y2),R kPA+kPB =y1-y0
y2
1
4-y2
0
4
+y2-y0
y2
2
4-y2
0
4
= 4
y1+y0
+ 4
y2+y0
=0,
67 y1+y0+y2+y0=0,y1+y2=-2y0,
67J ABKæo kAB =y1-y2
y2
1
4-y2
2
4
= 4
y1+y2
=-2
y0
.J ABKæo4Ò -2
y0
.(12a)
21.1:(1)34 f(x)=ax2(lnx+1
2)-xlnx+1,
67 f′(x)=2axlnx+2ax-lnx-1=(2ax-1)(lnx+1)(x>0),
①¢ a≤0,R 2ax-1<0,p x∈(0,1
e)q,f′(x)>0,f(x):çè#,
p x∈(1
e,+∞)q,f′(x)<0,f(x):éè#;
②¢ 0<a<e
2, 1
2a>1
e,
p x∈(0,1
e)ê x∈(1
2a,+∞)q,f′(x)>0,f(x):çè#,
p x∈(1
e,1
2a)q,f′(x)<0,f(x):éè#.
ëU?B,p a≤0q,f(x)T(0,1
e)UV+ìç,T(1
e,+∞)UV+ìé;
p 0<a<e
2q,f(x)T(0,1
e)ê(1
2a,+∞)UV+ìç,T(1
e,1
2a)UV+ìé.(6a)
(2)p a=1q,íî f(x)>3
2x2-2x+1+sinx,
ãïî f(x)≥ 3
2x2-2x+2,î(x2-x)(lnx-1+1
x)≥0,
34 x≥1,67 x2-x≥0, g(x)=lnx-1+1
x,
R g′(x)=1
x-1
x2 =x-1
x2 ≥0,
67 g(x)T[1,+∞)U:çè#,g(x)≥g(1)=0,lnx-1+1
x≥0,
67(x2-x)(lnx-1+1
x)≥0,
3ð f(x)>3
2x2-2x+1+sinxtu.(12a)!"#$[% 6 &]
22.1:(1)ρ2 槡=2+22ρsin(θ+π
4)=2+2ρcosθ+2ρsinθ,
= ρ2=x2+y2,ρcosθ=x,ρsinθ=y,BIJ CKñò]}4 x2+y2=2+2x+2y,
(x-1)2+(y-1)2=4,
x-1=2cosφ,y-1=2sinφ,BIJ CK¹#]}
x=1+2cosφ
y=1+2sin{ φ
(φ4¹#).(5a)
(2) P(1+2cosφ1,1+2sinφ1),Q(1+2cosφ2,1+2sinφ2),
M(x,y),R x=1+cosφ1+cosφ2,y=1+sinφ1+sinφ2,
= AP 2 + AQ 2 =40,B (2cosφ1-2)2 +(2sinφ1-2)2 +(2cosφ2-2)2 +(2sinφ2-2)2
=40,
ÕÓB 1+cosφ1+cosφ2+1+sinφ1+sinφ2=0, x+y=0,
67 MóTJ x+y=0U,67ðJKñò]}4 x+y=0.(10a)
23.1:(1)p m=2q,f(x)= x-2 - x-4 =
-2,x<2
2x-6,2≤x≤4
2, x
>4
,
p x<2q,-2>1¤tu,
p 2≤x≤4q,= 2x-6>1,B 7
2<x≤4,
p x>4q,2>1tu,
67¤Ýô f(x)>1K1õ4(7
2,+∞).(5a)
(2)34 f(x) = x-m - x-2m ≤ (x-m)-(x-2m) = m ,
67 - m ≤f(x)≤ m ,
a+ 1
(a-b)b=(a-b)+b+ 1
(a-b)b≥3
3
(a-b)b· 1
(a-b)槡 b=3,
p a-b=b= 1
(a-b)b, a=2,b=1q>Ýö,
¢P÷ø a>b>0Kù_ú# a,b,FG xK]} f(x)=a+ 1
(a-b)bK1õ4,
R m <3,
67 mK>¥¦:(-3,3).(10a).