西师大版六年级数学下册知识要点总结
知识点总结
总复习(数与代数概念部分)
一、数的意义:
1、整数:像—3、—2、—1、0、1、2、3……这样的数统称为整数。整数
的个数是无限的。没有最小的整数,也没有最大的整数,自然数是整数的
一部分。
2、自然数:用来表示物体个数的数。像 1、2、3、4、5……叫做自然数。
一个物体也没有用 0 表示。自然数的个数是无限的,最小的自然数是 0,没
有最大的自然数。
3、小数:把整数“1”平均分成 10 份、100 份、1000 份……这样的一分或
几份的数是十分之几、百分之几、千分之几……可以用小数表示。
4、小数的分类:
(1)纯小数和带小数:整数部分是 o 的小数叫做纯小数,整数部分不是 o
的小数叫做带小数。
(2)有限小数和无限小数:小数部分的位数是有限的小数叫做有限小数;
小数部分的位数是无限的小数叫做无限小数。
(3)循环小数:一个小数,从小数部分的某一位起一个数字或几个数字依
次不断地重复出现,这样的小数叫做循环小数。
(4)循环节:一个循环小数的小数部分,依次不断重复出现的数字叫做这
个小数的循环节。
(5)纯循环小数和混循环小数:循环节从小数部分第一位开始的,叫做
纯循环小数;循环节不是从第一位开始的,叫做混循环小数。
5、计数单位:个、十、百、千以及十分之一、百分之一、千分之一都是计
数单位。
6、数位:各个计数单位所占的位置叫做数位。
7、十进制计数法:“十进制计数法”是世界各国最常用的一种计数方法。
它的特点是每相邻的两个计数单位之间的进率都是“十”就是 10 个较低的
计数单位可以进成一个较高的计数单位(既通常说的“逢十进一”),这
种以“十”为基础进位的计数方法,叫做十进制计数法。
8、整数和小数数位顺序表:
9、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做
分数。
(1)分数单位:把单位“1”平均分成若干份,表示这样的一份的数就是
这个分数的分数单位。
(2)分数的分类:真分数:分子比分母小的分数叫做真分数。真分数小于
1。假分数:分子比分母大或者分子等于分母的分数叫做假分数,假分数≧
1
10、百分数:表示一个数是另一个数的百分之几的数叫做百分数,百分数
也叫百分率或百分比。百分数的分数单位是 1%。百分数的分母是 100。
11、分数和百分数的关系:分数既可以表示一个数(后面可加数量单位);
也可以表示两个数的比(两数之间的关系)。而百分数只表示一个数占另
一个数的百分比(两数之间的关系),不能表示具体的数。因此百分数不
带单位。
12、 正 数 和 负 数 : 像 1/3、 +2、 0.5、 +4.5… 这 样 的 数 叫 做 正 数 ; 像 ―
1/2、―5.5、―6…这样的数叫做负数。
(不能认为:一个数的前面加上“+”号这个数就是正数,也不能认为:
一个数的前面加上“—”号这个数就是负数)。比如:“—a”这个数我们
就不能判断是负数,因为 a 可能:是正数、是负数、0 都有可能;所以我们
无法判断。
自然数是等于或大于 0 的整数,也可以说是不小于 0 的整数,既是非负整
数。0 既不是正数也不是负数。
二、数的读法和写法。
1、读法:从高位到低位,一级一级的往下读,每一级末尾的 0 都不读出来,
其他数位的连续的几个 0 都只读一个。
2、写法:从高位到低位,一级一级的往下写,哪一个数位上一个单位也没
有,就在那个数为上写 0。
(一)、小数的读法与写法:
读法:通常是整数部分按整数的读法去读,小数点读作“点”,小数部分
按从左向右的顺序只读出数字。
写法:写小数时,整数部分按整数部分的写法去写,小数点写在个位的右
下角,小数部分按从左向右的顺序
依次写出每一个数位上的数字。
(二)、分数的读法与写法:
读法:读分数时,先读分数的分母,再读“分之”最后读分子。读带分数
时,要先读整数部分,再读“又”字,最后按分数部分的读法读分数部分。
(分数线的读法:“分之”),
写法:写分数时,要先写分数线,再写分母,最后写分子,写带分数时,
要先写整数部分,再写分数部分,整数部分要对其分数线,二者要紧凑。
(三)、百分数的读法与写法:
读法:百分数的读法与分数相同。
写法:百分数通常不写成分数形式,而是在原来的分子后面加上百分号
“%”来表示。写百分数时,先写分子,再写百分号。
(四)、数的大小比较:
1、整数的大小比较:比较两个整数的大小,首先要看它们的位数,如果位
数不相同,那么位数多的那个数就大;如果位数相同,就先从高位比起,
相同数位上的数大的那个数就大;
2、小数的大小比较:先比较它们的整数部分,整数部分大的那个数就大;
整数部分相同的,十分位上数大的那个数就大;十分位上的数字相同,百
分位上的数大那个数就大。…以此类推。
3、分数的大小比较:分母相同的分数,分子大的那个分数就大;(因为分
母相同,分数单位就相等,分子大的就意味着含有的分数单位多。);分
子相同的分数相比较,分母小的那个分数大。(分子相同含有的分数单位
数相同,分母小的分数分数单位就大)分子、分母都不同的分数相比较,
先通分,转化成同分母分数后,再比较大小。
4、正数和负数的大小比较:负数都比正数小。0 大于一切负数,0 小于一
切正数。
5、两个负数相比较:如果 a>b(a、b 均为正数),则-a<-b。就是在
不看负数符号的情况下:数大的那个数反而小。
三、数的性质:
1、分数的性质:分子和分母同时乘上或者除以相同的数(0 除外),分数
的大小不变。(注意:分数的分单位有变化,分子、分母都有变化)
2、约分和通分:把一个分数化成和原分数相等的,且分子分母都比原分数
小的的分数叫做约分;把异分母分数分别化成和原分数相等的同分母分数,
叫做通分。
3、最简分数:分子和分母只有公因数 1 的分数叫做最简分数。
4、小数的基本性质:小数的末尾添上或去掉 0,小数的大小不变。(注意:
小数的位数有变化,精确度有变化。)
5、小数点的位置移动引起小数的大小变化规律:小数点每向右移动一位、
两位、三位···这个数就扩大到原来的 10 倍、100 倍、1000 倍···;
小数点每向左移动一位、两位、三位···该数就缩小到原数的 1/10、1/100、
1/1000···。
四、数的改写:
1、把多位数改写成以”万“或者以”亿”单位的数。
(1)直接改写:把多位数改写成以”万“或者以”亿”单位的数,先把原
来的小数点向左移动 4 位或者 8 位,再在数后面加上“万”或“亿”字,
中间用“=”连接。
(2)省略尾数改写成近似数:先用“四舍五入法”省略万位或者亿位后面
的尾数,再在这个数的后面写上“万”字或者“亿”字。得出的是近似数,
中间用“≈”连接。
2、求小数的近似数:根据要求,要把小数保留到哪一位,就把这一位后面
的尾数按照“四舍五入法”省略,中间用“≈”。
3、小数、分数、百分数的互化:
小数化成分数方法:先看小数点后面有几位小数,就在 1 的后面添上几个 0
做分母,原来的小数去掉小数点后做分子。能约分的要约成最简分数。
分数化成小数方法:用分子除以分母。
小数化成百分数的方法:把小数的小数点向右移动两位,(位数不足时用 0
补足)同时在后面添上“%”。
百分数化成小数的方法:把百分数的分子的小数点向左移动两位,同时去
掉后面的“%”。
百分数化成分数的方法:先把百分数的改写成分母是 100 的分数,然后约
成最简分数。
分数化成百分数的方法:先把分数化成小数,在把小数化成百分数。
4、判断一个分数能否化成有限小数的方法:一个最简分数,如果分母中除
了含有质因数 2 和 5 以外,不含有其它质因数, 这个分数就能化成有限
小数;如果分母中含有了 2 和 5 以外的其他质因数,这个分数就不能化成
有限小数。
五、数的整除:
1、整除:整数 a 除以整数 b(b≠0),除得的商正好是整数且没有余数,
我们就说数 a 能被数 b 整除。(也可以说 b 能整除 a)。
2、因数和倍数:如果 a×b=c(a、b、c 都是非 0 整数)那么 a、b 就叫做 c
的因数,c 就叫做 a、b 的倍数。
一个数的因数的个数是有限的,其中最小的因数是 1,最大的因数
是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最
大的倍数。
3、公因数和最大公因数:几个数的公有的因数,叫做这几个数的公因数;
其中最大的一个叫做这几个数的最大公因数。
4、公倍数和最小公倍数:几个数公有的倍数,叫做这几个数的公倍数;其
中最小的那个数叫做这几个数的最小公倍数。。
5、求两个数的最大公因数的方法:一般采用列举法,就是把两个数的因数
一一列举出来,然后找出两个数的公因数,其中最大的那个数就是这两个
数最大公因数。也可以采用短除法。
短除法求最大公因数的方法:把两个数写在的横线上,先用着这两个数
的公有质因数做除数,如果两个数的商是互质数,除数就是这两个数的所
得的商就是这两个数的最大公因数。如果两个数的商不互质,就按照上面
的方法继续除,直到两个数的商最后是互质数为止,然后把所有的除数连
乘起来,所得的积就是这两个数的最大公因数。
6、求两个数的最小公倍数的方法:一般也采用列举法,把两个数的倍
数数根据需要按从小到大的顺序列举一部分,然后找出两个数的公有的倍
数,其中最小的那个公倍数就是这两个数的最小公倍数。也可以采用短除
法。
短除法求最小公倍数的方法:把两个数写在的横线上,先用着这
两个数的公有质因数做除数,所得的商写在横线下的相对应的位置,如果
两个数的商是互质数,就把除数和最后的两个商连乘起来,所得的积就是
这两个数的最小公倍数;如果两个数的商不互质, 就按照上面的方法继续
除,直到两个数的商最后是互质数为止,然后把所有的除数和最后所得商
连乘起来,所得的积就是这两个数的最小公倍数。
7、求两个数的最大公因数和最小公倍数的特殊方法:
如果两个数中,较大数是较小数的倍数,较小数就是较大数的因数,
则较大数是这两个数的最小公倍数;较小数是这两个数的最大公因数。
如果两个数是互质数,则它们的最大公因数是 1,最小公倍数是这
两个数的乘积。
8、奇数和偶数、在自然数中,是 2 的倍数的数叫做偶数,不是 2 的倍数的
数叫做奇数,最小的偶数是 0,最小的奇数是 1。
9、2、5、3 的倍数的特征。
(1)2 的倍数的特征:个位上是 0、2、4、6、8 的数都是 2 的倍
数。
(2)5 的倍数的特征:个位上是 0 或 5 的数都是 5 的倍数。
(3)3 的倍数特征:一个数各个数位上的数字的和是 3 的倍数,
这个数就是 3 的倍数。
10、质数和合数:一个数,如果只有 1 和它本身两个因数,这样的数叫做
质数(或素数);一个数,如果除了 1 和它本身还有别的因数,这样的数
叫做合数。质数有且只有两个因数,合数至少有三个因数。 1 既不是质数
也不数合数。
11、质因数与分解质因数:每个合数都可以写成几个质数相乘的形式,其
中每个质数都是这个合数的质因数。把一个合数用质数相乘的形式表示出
来,就是分解质因数。
12、分解质因数的方法:把一个合数分解质因数,通常用短除法,分解质
因数时,先用这个合数的质因数(通常用最小的开始)去除,得出的商如
果是质数,就把除数和商写成相乘的形式;得出的商如果是合数,就照上
面的方法继续下去,直到得出商是质数为止,然后把各个除数和最后的商
写成连乘的形式。
13、大于 0 的自然数的分类方法:
(1)根据是否是 2 的倍数,自然数可分为:奇数和偶数。
(2)根据所含因数的个数,自然数可分为:1、质数、合数。
六、数的运算:
1、加法的意义:把两个数(或几个数)合并成一个数的运算。
2、减法的意义:已知两个数的和与其中的一个加数,求另一个加数的运算。
3、乘法的意义:
(1)一个数乘整数,就是求几个相同加数和的简便运算。
(2)一个数乘小数,可以看作是求这个数的十分之几,百分之几···是
多少?
(3)一个数乘分数,就是求这个数的几分之几是多少。
4、除法的意义:以这两个数的积和其中的一个因数,求另一个因数的运算。
5、计算方法:
1、加法的计算方法。
(1)整数和小数:相同数位对齐,从低位加起,哪一位上的数相加满十,
要向前一位进 1。(2)分数:同分母分数相加,分母不变只把分子相加。
异分母分数相加,先通分,再按照同分母分数加法法则进行计算。
2、减法的计算方法:
(1)整数和小数:相同数位对齐,从低位减起,哪一位上的数不够减,从
前一位退 1,在本位上加 10 后再减。
(2)分数:同分母分数相减,分母不变,只把分子相减。(分子之差做分
子)异分母分数相减,先通分,再按照同分母分数减法法则进行计算。
3、乘法的计算方法:
⑴整数乘法的计算方法:相同数位对齐,从末尾乘起,用第二个因数
的每一位上的数去乘第一个因数,用哪一位的数去乘,乘得的积的末尾就
要和那一位对齐,最后把每次乘得的积的相加。
⑵小数乘法的计算方法:计算小数乘法,末尾对齐,先按照整数乘法
的计算方法算出积,再看因数中一共有几位小数, 就从积的末尾起向
左数出几位,点上小数点。
⑶分数乘法的计算方法:分数乘分数,用分子相乘的积作分子,分母相
乘的积作分母(能约分的要先约分)。
⑷除法的计算方法:整数除法的计算方法:从被除数的高位除起,除的
时候,除数有几位数就先看被除数的前几位,如果前几位不够除,再多看
一位,除到被除数的哪一位,就把商写在哪一位的上面,每次除得余数必
须比除数小。
⑸小数除法的计算方法:除数是整数的小数除法,要按照整数除法的
计算方法去除,商的小数点要和被除数的小数点对齐。如果除到被除数的
末尾仍有余数,就在余数的末尾添上 0 继续除。除数是小数的除法:先移
动除数的小数点,使它变为整数,除数的小数点向右移动几位,被除数的
小数点也要向右移动相同位数(位数不够时,在被除数的末尾用 0 补足),
然后按除数是整数的小数除法的计算方法进行计算。
⑹分数除法的计算方法:甲数除以乙数(0 除外)等于甲数乘乙数的倒
数。
倒数:乘积为 1 的两个数互为倒数。
七、四则运算的验算方法:
1、加法的验算方法
(1)用加法验算:调换两个加数的位置再加一遍。
(2)用减法验算:和—一个加数=另一个加数。
2、减法的验算方法:
(1)用加法验算:差+减数=被减数。
(2)用减法验算:被减数—差=减数。
3、乘法的验算方法:
(1)用乘法验算:调换两个因数的位置再称一遍。
(2)用除法验算:积÷一个因数=另一个因数。
4、除法的验算方法:
(1)用乘法验算:如果没有余数,商×除数=被除数,如果有余数,商×
除数+余数=被除数。
(2)用除法验算:被除数÷商=除数 或(被除数-余数)÷商=除数
八、0 与 1 在四则运算中特性:
a+0=a a×0=0 0÷a=0 a-0=a a×1=a
a-a=0 a÷1=a 1÷a=1/a (在上面算式中 a 作除数时 a≠0)
九、运算定律:
1、加法的交换律:a+b=b+a
2、加法的结合律:a+b+c=a+(b+c)
3、乘法的交换律:a×b=b×a
4、乘法的结合律:a×b×c=a×(b×c)
5、乘法的分配率:(a+b)×c=a×c+b×c
十、运算性质:
1、减法的运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c
2、除法的运算性质(除数不为 0):
a ÷(b×c)=a÷b ÷c
a÷(b÷c)=a÷b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
十一、运算顺序:
1、加法和减法叫做一级运算,乘法和除法叫做第二级运算。
2、在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计
算;如果含有两级运算,要先算第二级运算,后算第一级运算。
3、在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。
十二、解决问题:
1、复合应用题:用两步或两步以上计算来解答的应用题。分析此问题,一
般采用分析法或综合法。
分析法:从要求问题入手,逐步找出解答问题所需要的信息,求得问
题的解决。
综合法:从已知条件入手,利用已知条件看能解决什么问题,从而
求得问题的解决。
2、解决问题的一般步骤:首先理解题意,找出已知条件何所求问题;其次。
分析数量关系,确定先算什么,再算什么,最后算什么;再次,确定每一
步该怎样算,列出算式,算出得数;最后进行检验,写出答案。
3、几种常见的数量关系:
(1)路程=速度×时间
(2)总价=单价×数量
(3)工作总量=工效×时间
(4)总产量=单产量×数量(5)收入--支出=结余(6)利息=本金×利息×
时间
十三、式与方程:
1、用字母表示数的意义:用字母表示数是代数的基本特点。既简单明了,
又能表达数量关系的一般规律。
2、用字母代表数的作用:
(1)用字母代表任何数。
(2)用字母表示常见的数量关系。
(3)用字母表示运算定律。
(4)用字母表示计算公式。
3、(1)数字与字母、字母与字母相乘时,乘号可以简写成“·”或者省
略不写。数与数相乘,乘号不能省略。
4、等式与方程:表示相等关系的式子叫做等式。含有未知数的等式叫做方
程。
方程的解:使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程中未知数的过程叫做解方程。
5、等式的性质:
(1)等式两边都加上或减去同一个数,左右两边仍然相等。
(2)等式两边都乘上(或除以)同一个不为零的数,左右两边仍然相等。
(3)根据等式的性质可以解方程。
6、列方程解应用题的步骤:
(1)找出未知数并用 X 表示。
(2)找出应用题中数量间的相等关系,并更具等量关系列出方程。
(3)解方程,求未知数的值。
(4)检验写答语。
十四、常见的计量单位及其进率:
(一)意义:
(1)物体的多少、长短、大小、轻重、快慢等。这些可以测定的客观事物
的特征叫做量。
(2)把一个要测定的量同一个作为标准的量相比较叫做计量。用来作为计
量标准的量叫做计量单位。
(二)常用的计量单位及其进率。
(1)货币单位及其进率:1 元=10 角 1 角=10 分
(2)长度单位及其进率:
1 千米=1000 米 1 米=10 分米=100 厘米
1 分米=10 厘米 1 厘米=10 毫米
(3)面积单位及其进率:
1 平方千米=1000000 平方米 1 平方千米=100 公顷
1 公顷=10000 平方米 1 平方米=100 平方分米
1 平方分米=100 平方厘米 1 平方厘米=1000 平方毫米
质量单位及其进率: 1 吨=1000 千克 1 千克=1000 克
时间单位及其进率:
(1)1 年有 12 个月,年有 365 天,闰年有 366 天。
(2)1、3、5、7、8、10、12 月是大月,每月 31 天;4、6、9、11 月是小
月,每月有 30 天;二月既不是大月也不是小月,平年二月 28 天,闰年二
月有 29 天。
(3)按四个季度分,1、2、3 月份属第一季度,4、5、6 月份是第二季度,
7、8、9 月份是第三季度,10、11、12 是第四季度。
(4)每个月分上、中、下三旬,上旬、中旬各有 10 天,下旬的天数大月 11
天,小月有 10 天。闰年二月下旬 9 天,平年 8 天
(5)1 星期=7 日 1 日=24 小时 1 小时=60 分 1 分=60 秒 1
世纪=100 年
(6)平年闰年判断的方法:公历年份能被 4 整除,整百,整千年份能整除
400 的是闰年,反之是平年。
(三)计量单位的改写:1、名数的意义:计量的结果,要用数表示,并且
还要带上单位的名称,通常把他们合起来叫做名数 。只带一个名称的叫单
名数;带两个或两个以上单位名称的叫复名数。如:2 千克 50 克,8 平方
米 20 平方分米 5 平方厘米。
2、名数的改写:把高级单位的名数改写成低级单位的名数用进率去乘,
把低级单位的名数改写成高级单位名数用进率去除。当进率是 10、100、
1000···是也可以把小数点向右(左) 移动一位,两位、三位···。
位数不足时,用零补足。
十五、比和比例:
(1)比和比例的意义、各部分名称、基本性质。
(2)比和分数、除法的关系
(3)求比值和化简比
意义 方法 结果
求
比值
前项除以后项所
得的商
根据比值的意义,用前项除以后项
一 个 商
( 整 数 、
小 数 或 分
数)
化
简
比
把两个数的比化成
最简单的整数比
比的前项和后项都乘或除以一个相同的数(0 除外);
也可以根据求比值的方法,用前项除以后
项
一个比