江苏省盐城市2020届高三数学6月第三次模拟试卷(Word版附答案)
加入VIP免费下载

江苏省盐城市2020届高三数学6月第三次模拟试卷(Word版附答案)

ID:445444

大小:198.72 KB

页数:15页

时间:2020-12-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1 2020 届高三模拟考试试卷 数  学 (满分 160 分,考试时间 120 分钟) 2020.6 参考公式: 锥体体积公式:V=1 3Sh,其中 S 为锥体的底面积,h 为高. 一、 填空题:本大题共 14 小题,每小题 5 分,共 70 分. 1. 若 集 合 A = {x|x≤m} , B = {x|x≥ - 1} , 且 A∩B = {m} , 则 实 数 m 的 值 为 ________. 2. 已知 i 为虚数单位,复数 z 满足 z(3+i)=10,则|z|的值为________. 3. 从数字 0,1,2 中任取两个不同的数字构成一个两位数,则所得的两位数大于 10 的 概率为________. 4. 如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分 布直方图,图中小矩形从左向右所对应的区间依次为[0,50),[50,100),[100,150),[150, 200),[200,250].若一个月以 30 天计算,估计这家面包店一个月内这种面包的日销售量少 于 100 个的天数为________天. 5. 执行如图所示的流程图,输出 k 的值为________. 6. 若双曲线x2 a2-y2 b2=1(a>0,b>0)的渐近线为 y=±2x,则其离心率的值为________. 7. 若三棱柱 ABCA1B1C1 的体积为 12,点 P 为棱 AA1 上一点,则四棱锥 PBCC1B1 的体 积为________. 8. “ω=2”是“函数 f(x)=sin(ωx+ π 6 )的图象关于点(5π 12 ,0)对称”的__________条 2 件.(选填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”) 9. 在△ABC 中,C=B+ π 4 ,AB=3 2 4 AC,则 tan B 的值为________. 10. 若数列{a n}的前 n 项和为 S n ,a n =2 n - 1 +(-1) n(2n-1),则 2a 100 -S 100 的值为 ________. 11. 若集合 P={(x,y)|x2+y2-4x=0},Q={(x,y)||x+2| y ≥ 15},则 P∩Q 表示的曲线 的长度为________. 12. 若函数 f(x)={m+ex,x > 0, e2x-1,x ≤ 0 的图象上存在关于原点对称的相异两点,则实数 m 的 最大值是________. 13. 在△ABC 中,AB=10,AC=15,∠A 的平分线与边 BC 的交点为 D,点 E 为边 BC 的中点.若AB → ·AD → =90,则 AB → ·AE → 的值是________. 14. 若实数 x,y 满足 4x2+4xy+7y2=1,则 7x2-4xy+4y2 的最小值是________. 二、 解答题:本大题共 6 小题,共 90 分. 解答时应写出必要的文字说明、证明过程或 演算步骤. 15. (本小题满分 14 分) 若函数 f(x)=Msin(ωx+φ)(M>0,ω>0,00)的短轴长为 2,F1,F2 分别是椭 圆 C 的左、右焦点,过点 F2 的动直线与椭圆交于点 P,Q,过点 F2 与 PQ 垂直的直线与椭圆 C 交于 A,B 两点.当直线 AB 过原点时,PF1=3PF2. (1) 求椭圆 C 的标准方程; (2) 若点 H(3,0),记直线 PH,QH,AH,BH 的斜率依次为 k1,k2,k3,k4. ① 若 k1+k2= 2 15,求直线 PQ 的斜率; ② 求(k1+k2)(k3+k4)的最小值. 5 19. (本小题满分 16 分) 如果存在常数 k 使得无穷数列{an}满足 amn=kaman 恒成立,则称{an}为 P(k)数列. (1) 若数列{an}是 P(1)数列,a6=1,a12=3,求 a3; (2) 若等差数列{bn}是 P(2)数列,求{bn}的通项公式; (3) 是否存在 P(k)数列{cn},使得 c2 020,c2 021,C2 022,…是等比数列?若存在,请求出 所有满足条件的数列{cn};若不存在,请说明理由. 6 20. (本小题满分 16 分) 设函数 f(x)=-3ln x+x3+ax2-2ax. (1) 当 a=0 时,求函数 f(x)的单调递增区间; (2) 若函数 f(x)在 x=1 时取极大值,求实数 a 的取值范围; (3) 设函数 f(x)的零点个数为 m,试求 m 的最大值. 7 2020 届高三模拟考试试卷 数学附加题(满分 40 分,考试时间 30 分钟) 21. 【选做题】 在 A,B,C 三小题中只能选做两题,每小题 10 分,共 20 分.若多做, 则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤. A. (选修 42:矩阵与变换) 已知矩阵 A=[ a 2 b 1 ].若矩阵 A 属于特征值 3 的一个特征向量为 α=[1 1 ],求该 矩阵属于另一个特征值的特征向量. B. (选修 44:坐标系与参数方程) 在极坐标系中,已知直线 l:ρcos θ+2ρsin θ=m(m 为实数),曲线 C:ρ=2cos θ+4sin θ,当直线 l 被曲线 C 截得的弦长取最大值时,求实数 m 的值. C. (选修 45:不等式选讲) 已知实数 x,y,z 满足 x+y+2z=1,求 x2+y2+z2 的最小值. 8 【必做题】 第 22,23 题,每小题 10 分,共 20 分.解答时应写出必要的文字说明、证 明过程或演算步骤. 22. 如图,抛物线 C:y2=2px(p>0)的焦点为 F,过点 P(2,0)作直线 l 与抛物线交于 A,B 两点,当直线 l 与 x 轴垂直时 AB 的长为 4 2. (1) 求抛物线的方程; (2) 若△APF 与△BPO 的面积相等,求直线 l 的方程. 23. 若有穷数列{an}共有 k 项(k≥2),且 a1=1,ar+1 ar =2(r-k) r+1 ,当 1≤r≤k-1 时恒成 立.设 Tk=a1+a2+…+ak. (1) 求 T2,T3; (2) 求 Tk. 9 2020 届高三模拟考试试卷(盐城) 数学参考答案及评分标准 1. -1 2. 10 3. 3 4 4. 12 5. 4 6. 5 7. 8 8. 充分不必要 9. 2 10. 299 11. 2π 3 12. 1+e2 13. 175 2  14. 3 8 15. 解:(1) 因为 f(x)的最小值是-2,所以 M=2.(2 分) 因为 f(x)的最小正周期是 2π,所以 ω=1.(4 分) 又由 f(x)的图象经过点 N( π 3 ,1),可得 f( π 3 )=1,sin( π 3 +φ)=1 2, 所以 φ+ π 3 =2kπ+ π 6 或 φ+ π 3 =2kπ+5π 6 ,k∈Z. 又 0

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料