高中数学(人教版必修2)配套练习 第二章2.3.1直线与平面垂直的判定(含答案).doc
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
§2.3 直线、平面垂直的判定及其性质 2.3.1 直线与平面垂直的判定 一、基础过关 1.已知直线 a∥b,平面 α∥β,a⊥α,则 b 与 β 的位置关系是 (  ) A.b⊥β B.b∥β C.b⊂β D.b⊂β 或 b∥β 2.直线 a⊥直线 b,b⊥平面 β,则 a 与 β 的关系是 (  ) A.a⊥β B.a∥β C.a⊂β D.a⊂β 或 a∥β 3.空间四边形 ABCD 的四边相等,则它的两对角线 AC、BD 的关系是 (  ) A.垂直且相交 B.相交但不一定垂直 C.垂直但不相交 D.不垂直也不相交 4.如图所示,定点 A 和 B 都在平面 α 内,定点 P∉α,PB⊥α,C 是平面 α 内异于 A 和 B 的动点,且 PC⊥AC,则△ABC 为 (  ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定 5. 在正方体 ABCD-A1B1C1D1 中, (1)直线 A1B 与平面 ABCD 所成的角是________; (2)直线 A1B 与平面 ABC1D1 所成的角是________; (3)直线 A1B 与平面 AB1C1D 所成的角是______. 6. 如图所示,在正方体 ABCD-A1B1C1D1 中,M、N 分别是棱 AA1 和 AB 上的点,若∠B1MN 是直角,则∠C1MN=______. 7.如图所示,在正方体 ABCD—A1B1C1D1 中,E、F 分别是棱 B1C1、B1B 的中点. 求证:CF⊥平面 EAB. 8. 如图所示,在四棱锥 P—ABCD 中,底面 ABCD 是矩形,侧棱 PA 垂直于底面,E、F 分别 是 AB、PC 的中点,PA=AD. 求证:(1)CD⊥PD; (2)EF⊥平面 PCD. 二、能力提升 9. 如图所示,PA⊥平面 ABC,△ABC 中 BC⊥AC,则图中直角三角形的个数为(  ) A.4 B.3 C.2 D.1 10.已知矩形 ABCD,AB=1,BC= 2,将△ABD 沿矩形的对角线 BD 所在的直线进行翻折, 在翻折过程中 (  ) A.存在某个位置,使得直线 AC 与直线 BD 垂直 B.存在某个位置,使得直线 AB 与直线 CD 垂直 C.存在某个位置,使得直线 AD 与直线 BC 垂直 D.对任意位置,三对直线“AC 与 BD”,“AB 与 CD”,“AD 与 BC”均不垂直 11.在直三棱柱 ABC—A1B1C1 中,BC=CC 1,当底面 A1B1C1 满足条件________时,有 AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况). 12. 如图所示,在正方体 ABCD-A1B1C1D1 中,P 为 DD1 的中点,O 为 ABCD 的中心,求证: B1O⊥平面 PAC. 三、探究与拓展 13.已知平面 α 外两点 A、B 到平面 α 的距离分别为 1 和 2,A、B 两点在 α 内的射影之间距 离为 3,求直线 AB 和平面 α 所成的角. 答案 1.A 2.D 3.C 4.B 5.(1)45° (2)30° (3)90° 6.90° 7.证明 在平面 B1BCC1 中, ∵E、F 分别是 B1C1、B1B 的中点, ∴△BB1E≌△CBF, ∴∠B1BE=∠BCF, ∴∠BCF+∠EBC=90°,∴CF⊥BE, 又 AB⊥平面 B1BCC1,CF⊂平面 B1BCC1, ∴AB⊥CF,又 AB∩BE=B, ∴CF⊥平面 EAB. 8.证明 (1)∵PA⊥底面 ABCD, ∴CD⊥PA. 又矩形 ABCD 中,CD⊥AD,且 AD∩PA=A,∴CD⊥平面 PAD,∴CD⊥PD. (2)取 PD 的中点 G,连接 AG,FG.又∵G、F 分别是 PD、PC 的中点, ∴GF 綊 1 2CD, ∴GF 綊 AE, ∴四边形 AEFG 是平行四边形,∴AG∥EF. ∵PA=AD,G 是 PD 的中点, ∴AG⊥PD,∴EF⊥PD, ∵CD⊥平面 PAD,AG⊂平面 PAD. ∴CD⊥AG.∴EF⊥CD. ∵PD∩CD=D,∴EF⊥平面 PCD. 9.A 10.B  11.∠A1C1B1=90° 12.证明 连接 AB1,CB1,设 AB=1. ∴AB1=CB1= 2, ∵AO=CO,∴B1O⊥AC. 连接 PB1. ∵OB21=OB2+BB21=3 2, PB21=PD21+B1D21=9 4, OP2=PD2+DO2=3 4, ∴OB21+OP2=PB21. ∴B1O⊥PO, 又∵PO∩AC=O,∴B1O⊥平面 PAC. 13.解 (1)如图①,当 A、B 位于平面 α 同侧时,由点 A、B 分别向平面 α 作垂线,垂足分 别为 A1、B1,则 AA1=1,BB1=2,B1A1= 3.过点 A 作 AH⊥BB1 于 H,则 AB 和 α 所成 角即为∠HAB.而 tan∠BAH=2-1 3 = 3 3 . ∴∠BAH=30°. (2)如图②,当 A、B 位于平面 α 异侧时,经 A、B 分别作 AA1⊥α 于 A1,BB1⊥α 于 B1,AB∩α =C,则 A1B1 为 AB 在平面 α 上的射影,∠BCB1 或∠ACA1 为 AB 与平面 α 所成 的 角. ∵△BCB1∽△ACA1, ∴BB1 AA1=B1C CA1=2, ∴B1C=2CA1,而 B1C+CA1= 3, ∴B1C=2 3 3 . ∴tan∠BCB1=BB1 B1C= 2 2 3 3 = 3, ∴∠BCB1=60°. 综合(1)、(2)可知:AB 与平面 α 所成的角为 30°或 60°.

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料