2020-2021学年初三数学上册同步练习:公式法解一元二次方程
加入VIP免费下载

2020-2021学年初三数学上册同步练习:公式法解一元二次方程

ID:461490

大小:587.42 KB

页数:8页

时间:2020-12-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2020-2021 学年初三数学上册同步练习:公式法解一元二次方程 1.在 Rt A B C 中, 90ABC   , :BC2:3AB , 5AC  ,则 AB =( ). A. 52 B. 10 C. 5 D. 15 【答案】B 【解析】 【分析】依题意可设 2AB x , 3B C x ,根据勾股定理列出关于 x 的方程,解方程求出 x 的值,进而 可得答案. 【详解】 解:如图,设 , ,根据勾股定理,得: 222 3 2 5xx ,解得 5x  ,∴ 10AB = . 故选 B. 【点评】本题考查了勾股定理和简单的一元二次方程的解法,属于基础题型,熟练掌握勾股定理是解题的 关键. 2.已知方程  2 00axca 有实数根,则 a 与 c 的关系是( ). A. 0c = B. 或 、 异号 C. 或 、 同号 D. 是 的整数倍 【答案】B 【解析】 【分析】将原方程化为 2 a= cx 的形式,根据 2x0 可判断出正确答案。 【详解】 原方程可化为 ,∵ ,∴ c 0a时方程才有实数解。当 c=0 时, 2 0=x 有实数根;当 a、c 异 号时, ,方程有实数解。故选 B。 【点评】形如 2 =ax 的一元二次方程当 a≥0 时方程有实数解。 3.如果一直角三角形的三边为 a,b,c,∠B=90°,那么关于 x 的方程 a(x2﹣1)﹣2cx+b(x2+1)=0 的根 的情况为( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.没有实数根 D.无法确定根的情况 【答案】A 【解析】 【分析】根据勾股定理,确立 a2+c2=b2,化简根的判别式,判断根的情况就是判断△ 与 0 的大小关系. 【详解】 ∵∠B=90° ∴a2+c2=b2 化简原方程为:(a+b)x2-2cx+b-a=0 ∴△=4c2-4(b2-a2)=4c2-4c2=0 ∴方程有两个相等实数根 故选:A. 【点评】考查了一元二次方程根的情况与判别式△ 的关系:(1)△ >0⇔方程有两个不相等的实数根;(2) △ =0⇔方程有两个相等的实数根;(3)△ <0⇔方程没有实数根. 4.若一元二次方程(k-1)x2+2kx+k+3=0 有实数根,则 k 的取值范围是( ) A.k≤ 3 2 B.k< C.k≤ 且 k≠1 D.k≥ 【答案】C 【解析】 【分析】根据二次项系数非零结合根的判别式△ ≥0,即可得出关于 k 的一元一次不等式组,解之即可得出 k 的取值范围. 【详解】 解:∵一元二次方程(k-1)x2+2kx+k+3=0 有实数根, ∴ 2(2)4(1)(3)0kkk=--+? 且 10k  , 解得:k≤ 且 k≠1. 故选:C. 【点评】本题考查了一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△ ≥0, 列出关于 k 的一元一次不等式组是解题的关键. 5.定义:如果一元二次方程푎푥2 + 푏푥 + 푐 = 0(푎 ≠ 0)满足푎 − 푏 + 푐 = 0,那么我们称这个方程为“美丽”方 程.已知푎푥2 + 푏푥 + 푐 = 0(푎 ≠ 0)是“美丽”方程,且有两个相等的实数根,则下列结论正确的是( ) A.푎 = 푏 = 푐 B.푎 = 푏 C.푏 = 푐 D.푎 = 푐 【答案】D 【解析】 【分析】根据已知得出方程푎푥2 + 푏푥 + 푐 = 0(푎 ≠ 0)有 x=-1,再判断即可. 【详解】 把 x=−1 代入方程푎푥2 + 푏푥 + 푐 = 0(푎 ≠ 0)得出 a−b+c=0, ∴b=a+c, ∵方程有两个相等的实数根, ∴△=푏2 − 4푎푐 = (푎 + 푐)2 − 4푎푐=(푎 − 푐)2 = 0, ∴a=c, 故选 D. 【点评】此题考查根的判别式,解题关键在于利用有两个相等的实数根. 6.如果点 A(3,4),B(5,a)两点之间的距离是 4,那么 a=_____________. 【答案】 4 2 3 . 【解析】 【分析】根据两点之间的距离公式,列出无理方程,求解即可. 【详解】 解:因为点 A(3,4),B(5,a)两点之间的距离是 4, 所以 22(35)(4)4 a , 即 24 (4 ) 16a   , 2(4)12a, 423a  , 4 2 3a  . 故答案为: . 【点评】本题考查两点之间的距离公式,解无理方程,解一元二次方程.能利用两点之间的距离公式列出 无理方程是解决此题的关键. 7.已知 a,b,c 分别是△ ABC 的三边长,那么方程 2 ()0 4 ccxabx+ + + = 的根的情况是________________. 【答案】有两个不相等的实数根 【解析】 【分析】求出方程对应的判别式,根据三角形三边关系得到 0 ,即可得出结论. 【详解】 解:一元二次方程对应的判别式 222()4() 4 cabcabc , ∵在三角形中,两边之和大于第三边,即 a b c, ∴ 22( ) 0a b c   ,即 , ∴方程 2 ()0 4 ccxabx 有两个不相等的实数根, 故答案为:有两个不相等的实数根. 【点评】本题主要考查一元二次方程根的判别式,根的情况与判别式△ 的关系:(1)△ >0⇔方程有两个不 相等的实数根;(2)△ =0⇔方程有两个相等的实数根;(3)△ <0⇔方程没有实数根. 8.设 A 是方程 x2- 2003 x-520=0 的所有根的绝对值之和,则 A2=________. 【答案】4083 【解析】 【分析】根据公式法 x= 2 4 2 bbc a a 得到 x= 20034083 2  ,再根据题意得到 2003 4083 2003 4083 22  ,计算即可得到答案. 【详解】 由公式法得 x= ,则 = 2003408340832003 408322 ,所以 A2=4083. 【点评】本题考查公式法求一元二次方程,解题的关键是掌握公式法求一元二次方程. 9.关于 x 的方程 2( ) 1 0 ( 0)bx b   的根是_________________. 【答案】无解或者 x=±1 b . 【解析】 【分析】先移项,然后利用直接开平方法解方程即可. 【详解】 解:∵(bx)2-1=0 ∴(bx)2=1 ∴bx=±1 ①当 b=0 时,该方程无解. ②当 b>0 时,x=± 1 b 综上所述,当 b=0 时原方程无解;当 b>0 时方程的解是 x=± . 故答案是:无解或者 x=± . 【点评】考查了解一元二次方程的解法-直接开平方法.形如 x2=p 或(nx+m)2=p(p≥0)的一元二次方程 可采用直接开平方的方法解. 10.已知关于 x 的方程 x2-2x-m=0 没有实数根,试判断关于 x 的方程 x2+2mx+m(m+1)=0 的根的情 况. 【答案】方程 x2+2mx+m(m+1)=0 有两个不相等的实数根,理由见解析 【解析】 【分析】首先根据已知方程无实根可得 Δ1

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料