2019年秋人教版九年级数学第21章一元二次方程《21.2.3因式分解法》PPT课件
加入VIP免费下载

2019年秋人教版九年级数学第21章一元二次方程《21.2.3因式分解法》PPT课件

ID:462792

大小:607.5 KB

页数:18页

时间:2020-12-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
21.2 解一元二次方程 第二十一章 一元二次方程 导入新课 讲授新课 当堂练习 课堂小结 学练优九年级数学上 (RJ) 教学课件 21.2.3 因式分解法学习目标 1.理解用因式分解法解方程的依据. 2.会用因式分解法解一些特殊的一元二次方程.(重点) 3.会根据方程的特点选用恰当的方法解一元二次方程.(难点)导入新课 情境引入 我们知道ab=0,那么a=0或b=0,类似的解方程(x+1)(x- 1)=0时,可转化为两个一元一次方程x+1=0或x-1=0来解,你 能求(x+3)(x-5)=0的解吗?讲授新课 因式分解法解一元二次方程一 问题1 根据物理学规律,如果把一个物体从地 面以10m/s的速度竖直上抛,那么经过xs物体离 地面的高度(单位:m)为10-4.9x2.你能根据上述 规律求出物体经过多少秒落回地面吗(精确到 0.01s)? 提示: 设物体经过xs落回地面,这时它离地面 的高度为0,即 10-4.9x2 =0 ① 解: 解: ∵ a=4.9,b=-10,c=0. ∴ b2-4ac= (-10)2-4×4.9×0 =100. 公式法解方程10x-4.9x2=0.配方法解方程10x-4.9x2=0. 10x-4.9x2=0.因式分解 如果a · b = 0, 那么 a = 0或 b = 0. 两个因式乘积为 0,说明什么 或 降次,化为两个一次方程 解两个一次方程,得出原方程的根 这种解法是不是很简单? 10x-4.9x2 =0 ① x(10-4.9x) =0 ② x =0 ① 10-4.9x=0 上述解法中,由①到②的过程,先因式分解使方程化为 两个一次式的乘积等于0的形式,再使这两个一次式分别等于 0,从而实现降次.这种解法叫做因式分解法. 要点归纳 因式分解法的概念 因式分解法的基本步骤 一移-----方程的右边=0; 二分-----方程的左边因式分解; 三化-----方程化为两个一元一次方程; 四解-----写出方程两个解; 简记歌诀: 右化零 左分解 两因式 各求解试一试:下列各方程的根分别是多少? (1) x(x-2)=0; (1) x1=0,x2=2; (2) (y+2)(y-3)=0; (2) y1=-2,y2=3 ; (3) (3x+6)(2x-4)=0; (3) x1=-2,x2=2; (4) x2=x. (4) x1=0,x2=1. 例1 解下列方程: 解:(1)因式分解,得 于是得 x-2=0或x+1=0, x1=2,x2=-1. (2)移项、合并同类项,得 因式分解,得 ( 2x+1)( 2x-1 )=0. 于是得 2x+1=0或2x- 1=0, (x-2)(x+1)=0. 可以试用多种 方法解本例中 的两个方程 . 典例精析灵活选用方法解方程二 典例精析 例2 用适当的方法解方程: (1)3x(x + 5)= 5(x + 5); (2)(5x + 1)2 = 1; 分析:该式左右两边可以提取公因式, 所以用因式分解法解答较快. 解:化简 (3x -5) (x + 5) = 0. 即 3x - 5 = 0 或 x + 5 = 0. 分析:方程一边以平方形式出现, 另一边是常数,可直接开平方法. 解:开平方,得 5x + 1 = ±1. 解得, x 1= 0 , x2 = (3)x2 - 12x = 4 ; (4)3x2 = 4x + 1; 分析:二次项的系数为1,可用配 方法来解题较快. 解:配方,得 x2 - 12x + 62 = 4 + 62 , 即 (x - 6)2 = 40. 开平方,得 解得 x1= , x2= 分析:二次项的系数不为1,且不能直 接开平方,也不能直接因式分解,所 以适合公式法. 解:化为一般形式 3x2 - 4x + 1 = 0. ∵Δ=b2 - 4ac = 28 > 0, 填一填:各种一元二次方程的解法及适用类型. 拓展提升 一元二次方程的解法 适用的方程类型 直接开平方法 配方法 公式法 因式分解 x2 + px + q = 0 (p2 - 4q ≥0) (x+m)2=n(n ≥ 0) ax2 + bx +c = 0(a≠0 , b2 - 4ac≥0) (x + m) (x + n)=0①一般地,当一元二次方程一次项系数为0时(ax2+c=0), 应选用直接开平方法; •若常数项为0( ax2+bx=0),应选用因式分解法; •若一次项系数和常数项都不为0 (ax2+bx+c=0),先化为一般 式,看一边的整式是否容易因式分解,若容易,宜选用因式 分解法,不然选用公式法; •不过当二次项系数是1,且一次项系数是偶数时,用配方法 也较简单. 要点归纳 解法选择基本思路 ① x2-3x+1=0 ; ② 3x2-1=0 ; ③ -3t2+t=0 ; ④ x2-4x=2 ; ⑤ 2x2-x=0; ⑥ 5(m+2)2=8; ⑦ 3y2-y-1=0; ⑧ 2x2+4x-1=0; ⑨ (x-2)2=2(x-2). 适合运用直接开平方法 ; 适合运用因式分解法 ; 适合运用公式法 ; 适合运用配方法 . 当堂练习 1.填空 ⑥ ① ② ③ ④ ⑤ ⑦ ⑧ ⑨2.下面的解法正确吗?如果不正确,错误在哪?并请改正过来. 解方程 (x-5)(x+2)=18. 解: 原方程化为: (x-5)(x+2)=18 . ① 由x-5=3, 得x=8; ② 由x+2=6, 得x=4; ③ 所以原方程的解为x1=8或x2=4. 3.解方程x(x+1)=2时,要先把方程化为 ; 再选择适当的方法求解,得方程的两根为x1= ,x2= . x2+x-2=0 -2 1 解: 原方程化为: x2 - 3x -28= 0, (x-7)(x+4)=0, x1=7,x2=-4.解:化为一般式为 因式分解,得 x2-2x+1 = 0. ( x-1 )( x-1 ) = 0. 有 x - 1 = 0 或 x - 1 = 0, x1=x2=1. 解:因式分解,得 ( 2x + 11 )( 2x- 11 ) = 0. 有 2x + 11 = 0 或 2x - 11= 0, 4.解方程:5.把小圆形场地的半径增加5m得到大圆形场地,场地面积增 加了一倍,求小圆形场地的半径. 解:设小圆形场地的半径为r, 根据题意 ( r + 5 )2×π=2r2π. 因式分解,得 于是得 答:小圆形场地的半径是课堂小结 因式分解法 概 念 步 骤 简记歌诀: 右化零 左分解 两因式 各求解 如果a ·b=0,那么a=0或b=0.原 理 将方程左边 因式分解, 右边=0. 因式分解的方法有 ma+mb+mc=m(a+b+c); a2 ±2ab+b2=(a ±b)2; a2 -b2=(a +b)(a -b).

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料