5.2.2直线平行的条件(一) [教学目标]借助用直尺和三角板画平行线的过程,,得出直线平行的条件.会用直线平行的条件来判定直线平行.激发学生学习数学的兴趣.[教学重点与难点]重点: 理解直线平行的条件.难点: 直线平行的条件的应用[教学设计]提问复习题:1.如图,已知四条直线AB、AC、DE、FG(1)∠1与∠2是直线_____和直线____被直线________所截而成的________角.(2) ∠3与∠2是直线_____和直线____被直线________所截而成的________角.(3) ∠5与∠6是直线_____和直线____被直线________所截而成的________角.(4) ∠4与∠7是直线_____和直线____被直线________所截而成的________角.(5) ∠8与∠2是直线_____和直线____被直线________所截而成的________角.
2.下面说法中正确的是 ( ).(1) 在同一平面内,两条直线的位置关系有相交、平行、垂直三种 (2) 在同一平面内, 不垂直的两条直线必平行(3) 在同一平面内, 不平行的两条直线必垂直 (4) 在同一平面内,不相交的两条直线一定不垂直3.如果 a∥ b ,b ∥c ,那么_______,理由是_____________________.导言: 上节课我们学习了平行线的意义, 在同一平面内,两条直线的位置关系,以及平行公理,在此基础上,我们再来研究直线平行的条件.新课:直线平行的条件演示用直尺和三角板画平行线的过程,
如果∠4+∠2=180°, a∥ b吗? 三种方法可以简单地说成:
例题 已知:如图,直线AB ,CD,EF被MN所截, ∠1=∠2, ∠3+∠1=180°,试说明CD ∥EF.
解:因为∠1=∠2,所以 AB ∥CD.又因为 ∠3+∠1=180°,所以 AB ∥ EF.从而 CD ∥EF (为什么?).
课堂练习:1.下列判断正确的是 ( ).因为∠1和∠2是同旁内角,所以∠1+∠2=180°因为∠1和∠2是内错角,所以∠1=∠2 因为∠1和∠2是同位角,所以∠1=∠2 因为∠1和∠2是补角,所以∠1+∠2=180° 2.如图:(1) 已知∠1=65°, ∠2=65°,那么DE与 BC平行吗?为什么?(2)如果∠1=65°, ∠3=115°,那么AB与DF平行吗?为什么?(3) )如果∠4=60°, ∠2=65°,那么DE与BC平行吗?为什么?3. 4.如图所示:(1)如果已知∠1=∠3,则可判定AB∥______,其理由是__________________;(2)如果已知∠4+∠5=180°,则可判定___________∥______,其理由是__________________;(3)如果已知∠1+∠2=180°,则可判定___________∥______,其理由是__________________;(4)如果已知∠5+∠2=180°那么根据对顶角相等有∠2=__,因此可知∠4+∠5= ____,所以可确定 ___________∥______,其理由是__________________; (5)如果已知∠1=∠6,则可判定_____∥______,其理由是__________________.
第4题图 第5题图5.如图,(1)如果∠1=________,那么DE∥ AC;(2) 如果∠1=________,那么EF∥ BC;(3)如果∠FED+ ∠________=180°,那么AC∥ED;(4) 如果∠2+ ∠________=180°,那么AB∥DF.6.
7. 课后作业:习题5.2 第1,2,4题. 补充练习: 已知:如图,AB ∥CD,EF分别交 AB、CD于 E、F,EG平分∠ AEF ,FH平分∠ EFD EG与 FH平行吗?为什么?