5、对数函数及其性质(2)
一、教学内容分析
《普通高中课程标准数学教科书·必修(1)》(人民教育出版社)高中一年级第二单元2.2.2《对数函数的图象和性质》第一课时。
函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。必修(Ⅰ)2.2.2对数函数及其性质,按课标要求教学时间为3个学时,本节课为第1课时,本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。
二、学情与教材分析
对数函数是高中引进的第二个初等函数,是本章的重点内容。学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=logax(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。
最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。
三、设计思想
在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。通过对底数 的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。
四、教学目标
1、通过对对数函数概念的学习,培养学生实践能力,使学生理解对数函数的概念,激发学生的学习兴趣。
2、通过对对数函数有关性质的研究,渗透数形结合、分类讨论的数学思想。培养观察、分析、归纳的思维能力和交流能力,增强学习的积极性。掌握对数函数的图象与性质,并会初步应用。
3、培养学生自主学习、数学交流能力和数学应用意识。通过联系观点分析,解决两数比较大小的问题。
五、教学重点和难点
重点:1、对数函数的定义、图象、性质。
2、对数函数的性质的初步应用。
难点:底数a对对数函数图象、性质的影响。
六、教学过程设计
问题与情境
师生活动
设计意图
活动一:
1、你能说出指数函数的概念、图象、性质吗?
2、(课件演示)
看2.2.1的例6,在t=log 5730 P中,请同学们用计算器计算,在古遗址上生物体内碳14的含量P,与之相对应生物死亡年代t的值,完成下表:
P
0.5
0.3
0.01
t
3、你能归纳出这类函数的一般式吗?
生:回答问题1。
师:组织学生计算,注意引导学生从函数的实际出发,解释两个变量之间的关系。
教师提出问题,注意引导学生把解析式概括到y=logax形式。
学生思考,归纳概括函数特征。
通过回顾旧知识,使知识得到联系。
创设问题情境,让学生从生活中发现问题,激发学生的学习兴趣。
初步建立对数函数模形。
活动二:
归纳给出对数函数的概念
你知道为什么 且 和 吗?
师:(板书)一般地,我们把函数 且 叫做对数函数,其中x是自变量,定义域为 。
教学引导学生用对数的定义分析、回答。
抽象出对数函数的一般形式,让学生感受从特殊到一般的数学思维方法,发展学生抽象思维能力。
活动三:
1、你能用描点法画出 和 的图象吗?
2、从画出的图象中,你能发现解析式的区别在哪里?图象有什么不同和联系?
生:独立画图,同学间交流。
师:课堂巡视,个别辅导,展示画得较好的个别同学图象。图5—1
图5—1
生:个别同学尝试回答。
师:引导学生发现、观察、对比底数不同对函数图象的影响。
会用描点法画出这两个函数的图象。
为对数函数的图象和性质作铺垫。
活动四:
1、你知道下列函数:
(1) , ,
(2) , , 图象吗?观察并回答有什么共同点和不同点?
2、你能思考并归纳出
且 中,当 和
时,两种图象的特点吗?
生:独立思考,小组讨论。
师:用多媒体课件展示各个函数的图象。
生:观察图象讨论、交流合作,归纳出对数函数的共同性质。
师:注意引导学生从函数性质去分析。
通过学生讨论,培养学生交流合作能力。
获得对数函数的图象和性质。
明确底数a是确定对数函数的要素,渗透分类讨论思想。
给出对数函数y=logax(a>0且a≠1)的图象和性质。
图
象
图5-2
1
x
yu
O
1
x
yu
O
定义域
值域
R
过定点(1,0)
在 上为增函数
当
当
当在 上为减函数
当
当
通过对数函数图象的观察,分析总结出对数函数的性质,有利于加深学生对性质的理解和掌握,使学生经历从特殊到一般的过程,体验知识的产生形成过程,逐步培养学生的抽象概括能力。
活动五:
练习, ,1、画出函数 和 图象,并且说明这两个函数图象有什么不同点和相同点?
生:独立完成。
师:课堂巡视,注意收集学生存在的问题,集中讲评。
掌握对数函数图象的画法。
活动六:
例1、求下列函数的定义域:。
(1)
(2)
师:(分析)函数的定义域必须使函数的解析式有意义,根据 中 中,所以①中 ,即 0;② 。
师:(板书)解:(1)
,即函数 的定义域为 。(2)
,即函数
的定义域为 。
生:认真听讲,积极思考,叙述解例1的步骤。
明确真数大于0的条件,掌握解题步骤。
练习: ,2,求下列函数的定义域:
(1) (2)
(3) (4)
师:请4个同学上台板演。
生:独立完成。
师:课堂巡视,个别辅导,对学生完成情况进行点评。
函数图象性质,得到进一下的巩固和提高。
活动七:
例2,比较下列各组数中两个值的大小。
(1)
(2)
(3)
(4)
师:(分析)请同学们观察(1)(2)两题,这两个对数底数相同,因此(1)可认为是 中,x取3.4和8.5时的函数值。(2)可认为是 中,x取1.8和2.7的函数值。由 单调性可以比较,(3)中底数不相同,真数也不相同,结合函数图象,如何共同探索出比较方法,(4)根据函数的单调性,可寻找中间量1进行比较。
(板书)解:
(1)∵ 在(0,+∞)上是
增函数,且3.40且a≠1)的底数a>1和0