7、方程的根与函数的零点
一、 教学内容分析
本节课选自《普通高中课程标准实验教课书数学I必修本(A版)》第94-95页的第三章第一课时3.1.1方程的根与函数的的零点。
函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。在现实生活注重理论与实践相结合的今天,函数与方程都有着十分重要的应用,再加上函数与方程还是中学数学四大数学思想之一,因此函数与方程在整个高中数学教学中占有非常重要的地位。
就本章而言,本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.渗透“方程与函数” 思想。
总之,本节课渗透着重要的数学思想 “特殊到一般的归纳思想” “方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。
二 学生学习情况分析
地理位置:学生大多来自市区,学生接触面较广,个性较活跃,所以开始可采用竞赛的形式调动学生积极性;学生数学基础的差异不大,但进一步钻研的精神相差较大,所以可适当对知识点进行拓展。
程度差异性:中低等程度的学生占大多数,程度较高与程度很差的学生占少数。
知识、心理、能力储备:学生之前已经学习了函数的图象和性质,现在基本会画简单函数的图象,也会通过图象去研究理解函数的性质,这就为学生理解函数的零点提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解的。再者一元二次方程是初中的重要内容,学生应该有较好的基础对于它根的个数以及存在性学生比较熟悉,学生理解起来没有多大问题。这也为我们归纳函数的零点与方程的根联系提供了知识基础。但是学生对其他函数的图象与性质认识不深(比如三次函数),对于高次方程还不熟悉,我们缺乏更多类型的例子,让学生从特殊到一般归纳出函数与方程的内在联系,因此理解函数的零点、函数的零点与方程根的联系应该是学生学习的难点。加之函数零点的存在性的判定方法的表示抽象难懂。因此在教学中应加强师生互动,尽多的给学生动手的机会,让学生在实践中体验二者的联系,并充分提供不同类型的二次函数和相应的一元二次方程让学生研讨,从而直观地归纳、总结、分析出二者的联系。
三 设计思想
教学理念:培养学生学习数学的兴趣,学会严密思考,并从中找到乐趣
教学原则:注重各个层面的学生
教学方法:启发诱导式
四、教学目标
以二次函数的图象与对应的一元二次方程的关系为突破口,探究方程的根与函数的零点的关系,发现并掌握在某区间上图象连续的函数存在零点的判定方法;学会在某区间上图象连续的函数存在零点的判定方法。让学生在探究过程中体验发现的乐趣,体会数形结合的数学思想,从特殊到一般的归纳思想,培养学生的辨证思维以及分析问题解决问题的能力。
五、教学重点难点
重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。
难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。
六、教学程序设计
1 方程的根与函数的零点以及零点存在性的探索
1.1方程的根与函数的零点
问题1:解方程(比赛):①6x-1=0 ;②3x2+6x-1=0 。
再比赛解3x3+6x-1=0 设计意图:问题1(产生疑问,引起兴趣,引出课题)
比赛模式引入,调动积极性,可根据学分评定中进行过程性评定加分奖励,充分调动学生积极性和主动性。
第三题学生无法解答,产生疑惑引入课题:教师介绍说一次方程、二次方程甚至三次方程、四次方程的解都可以通过系数的四则运算,乘方与开方等运算来表示,但高于四次的方程一般不能用公式求解,如 3x5+6x-1=0 紧接着介绍阿贝尔(挪威)定理(五次及高于五次的代数方程没有一般的代数解法),伽罗瓦(法国)的近世代数理论,提出早在十三世纪的中国,秦九韶等数学家就提出了高次方程数值解的解法,振奋学生的民族自豪感,最后引出人们一直在研究方程的近似解方法二分法引入课题。
问题2:先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:如图7-1
1方程 与函数
2方程 与函数
3方程 与函数
图7-1
[师生互动]
师:教师引导学生解方程、画函数图象、分析方程的根与图象和x轴交点坐标的关系,推广到一般的方程和函数引出零点概念。
零点概念:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的。
师:填表格
函数
函数的零点
方程的根
生:经过独立思考,填完表格
师提示:根据零点概念,提出问题,零点是点吗?零点与函数方程的根有何关系?
生:经过观察表格,得出第一个结论
师再问:根据概念,函数y=f(x)的零点与函数y=f(x)的图象与x轴交点有什么关系
生:经过观察图像与x轴交点完成解答,得出第二个结论
师:概括总结前两个结论(请学生总结)。
1)概念:函数的零点并不是“点”,它不是以坐标的形式出现,而是实数。例如函数 的零点为x=-1,3
2)函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标.
3)方程 有实数根 函数 的图象与 轴有交点 函数 有零点。
师:引导学生仔细体会上述结论。
再提出问题:如何并根据函数零点的意义求零点?
生:可以解方程 而得到(代数法);
可以利用函数 的图象找出零点.(几何法)
问题2一方面让学生理解函数零点的含义,另一方面通过对比让学生再次加深对二者关系的认识,使函数图象与x轴交点的横坐标到函数零点的概念转变变得更自然、更易懂。通过对比教学揭示知识点之间的密切关系。
问题3:是不是所有的二次函数都有零点?
师:仅提出问题,不须做任何提示。
生:根据函数零点的意义探索研究二次函数的零点情况,并进行交流,总结概括形成结论.
二次函数 的零点:看△
1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.
2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
第一阶段设计意图
本节的前半节一直以二次函数作为模本研究,此题是从特殊到一般的升华,也全面总结了二次函数零点情况,给学生一个清晰的解题思路。进而培养学生归纳总结能力。
1.2零点存在性的探索
[师生互动]
师:要求生用连续不断的几条曲线连接如图4 A、B两点,观察所画曲线与直线l的相交情况,由两个学生上台板书:
.A
a b l
.B
图4
生:两个学生画出连接A、B两点的几条曲线后发现这些曲线必与直线l相交。
师:再用连续不断的几条函数曲线连接如图A、B两点,引导学生观察所画曲线与直线l的相交情况,说明连接A、B两点的函数曲线交点必在区间 (a,b) 内。
生:观察下面函数f(x)=0的图象(如图5)并回答
图5
①区间[a,b]上______(有/无)零点;f(a)·f(b)_____0(<或>)。
②区间[b,c]上______(有/无)零点;f(b)·f(c)_____0(<或>)。
③区间[c,d]上______(有/无)零点;f(c)·f(d)_____0(<或>)。
师:教师引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系。
生:根据函数零点的意义结合函数图象,归纳得出函数零点存在的条件,并进行交流、评析总结概括形成结论)
一般地,我们有:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线并且有f(a)·f(b)0时,函数在区间(a,b)内没有零点吗?
探求2:如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,并且有f(a)·f(b)