必修2数学2.1.3空间中直线与平面之间的位置关系PPT课件
加入VIP免费下载

必修2数学2.1.3空间中直线与平面之间的位置关系PPT课件

ID:491203

大小:775 KB

页数:31页

时间:2020-12-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2.1.3《空间中直线与平面之间的 位置关系》复习引入: 1、空间两直线的位置关系 (1)相交;(2)平行;(3)异面 2.平行公理的内容是什么? 平行于同一条直线的两条直线互相平行. 3.等角定理的内容是什么? 空间中如果两个角的两边分别对应平行,那么这 两个角相等或互补。 4.等角定理的推论是什么? 如果两条相交直线和另两条相交直线分别平行, 那么这两条直线所成的锐角(或直角)相等. 5.什么是异面直线?什么是异面直线所成的角? 什么是异面直线垂直?一、研探新知 (1)一支笔所在直线与一个作业本所在 的平面,可能有几种位置关系? A´ B´ C´D´ A B CD (2)如图,线段A´B所在直线与长方体 ABCD-A´B´C´D´的六个面所在平面有几 种位置关系?③直线与平面平行——没有公共点; 1、交流归纳:直线与平面的位置关系有且只有三种: ①直线在平面内——有无数个公共点(交点); ②直线与平面相交——有且只有一个公共点; α 2、如何用图形语言表示直线与平面的三种位置 关系? a a ① α ③ 二、新课 a α ② 错误画法: α a α ②① a a α ③(1)直线在平面内-----有无数个公共点 如图: (2)直线在平面外: ①直线a和面α相交 : 如图: ②直线a和面α平行 : 如图: .A a a a a a a 如何用符号语言表示直线与平面的位置关系: //a a三、尝试 练习 例1、判断下列命题的正确 (1)若直线l上有无数个点不在平面 内,则l// 。( ) (2)若直线l与平面 平行,则l与平面 内的任意一条 直线都平行。( ) (3)如果两条平行直线中的一条与一个平面平行,那么 另一条也与这个平面平行。( ) (4)若直线l与平面 平行,则l与平面 内的 任意一条直线都没有公共点。( ) X ∨ X X例2、若直线a不平行平面 ,且 则下列结论成立的是( ) (A) 内所有直线与a异面 (B) 内不存在与a平行的直线 (C) 内存在唯一的直线与a平行 (D) 内的直线与a都相交 B例3 已知直线a在平面α外,则 (   ) (A)a∥α     (B)aα=A (C)直线a与平面α至少有一个公共点 (D)直线a与平面α至多有一个公共点。 D 巩固练习:  1.选择题 (1)以下命题(其中a,b表示直线,a表示平面) ①若a∥b,bÌa,则a∥a   ②若a∥a,b∥a, 则a∥b ③若a∥b,b∥a,则a∥a   ④若 a∥a,bÌa,则a∥b 其中正确命题的个数是 ( )(A)0个 (B)1个 (C)2个 (D)3个 A2.已知a∥a,b∥a,则直线a,b的位置关系 ①平行;②垂直不相交;③垂直相交; ④相交;⑤不垂直且不相交.   其中可能成立的有 (   ) (A)2个 (B)3个 (C)4个 (D)5个 3.如果平面a外有两点A、B,它们到平面a的距 离都是a,则直线AB和平面a的位置关系一定是 (   ) (A)平行 (B)相交    (C)平行或相交  (D)AB Ìa 巩固练习:  D C巩固练习:  4.已知m,n为异面直线,m∥平面a,n∥ 平面b,a∩b=l,则l (   ) (A)与m,n都相交       (B)与m,n中至少一条相交 (C)与m,n都不相交    (D)与m,n中一条相交 C反思 与 总结 • 问题1、平行于同一平面的两条直线一 定是两条平行直线吗? • 问题2、两条平行线中的一条平行一个 平面,则另一条也一定平行于这个平 面吗? • 问题3、两条相交直线可以平行同一个 面吗? • 问题4、两条异面直线可以平行同一个 面吗?四、小结: 1、空间中直线与平面的三种位置关系: 直线在平面内——有无数个公共点(交点); 直线在平面外 相交——有且只有一个公共点; 平行——没有公共点; 2、用图形语言表示空间中直线与平面的三种位置关系: 3、用符号语言表示空间中直线与平面的三种关系: ① a α ② a∩α=A ③ a∥α αα a ① ② a α ③ a A五、小测: (一)判断正误。 1、直线l平行于平面α内的无数条直线,则l∥α;( ) 2、若直线a在平面α外,则a ∥α; ( ) 3、若直线a∥b,直线b α,则a∥α; ( ) 4、若直线a∥b,b α,那么直线a就平行于平面α内 的无数条直线; ( ) (二)画出满足下列条件的图形。 a α,A∈α,A∈a,b∩α=A × × × √2.1.4《空间中平面与平面之间 的位置关系》研探新知: 提出问题:空间中平面与平面的位置关系又是怎 样的呢? 观察思考: (1)拿出两本书,看作两个平面,上下、左 右移动和翻转,它们之间的位置关系有几种? (2)如图,围成长方体AC’的六个面, 两两之间的位置关系有几种?在问题(1)中,通过观察可以发现,两本书可 以平行,也可以是相交,注意平面是无限延展的。 在问题(2)中上下面,左右面,前后面是平行 的,相邻的两个面是相交的,所以位置关系有平 行与相交两种。 两个平面之间的关系有且只有两种: (1)两个平面平行――没有公共点; (2)两个平面相交――有一条公共直线。 想一想:两个平面平行应怎样画?相交又怎样画? 画两个互相平行的平面时,要注意使表示 平面的两个平行四边形的对应边平行 图1 图2 ×√ 图形 文字语言(读法) 符号语言 小结:空间中面与面的位置关系 两个平面有一公共直线 两个平面相交 两个平面无公共点 两个平面平行 α∥β α β例2:已知a ∥β, 则直线a和直线b的位置关系如何? a bb1.直线与直线,直线与平面,平面与平面之间 没有公共点就平行,平行就没有公共点,这句 话对吗?为什么? 2.直线与直线,直线与平面,平面与平面之间有 两个公共点时,它们的位置关系如何? 3.如果平面与平面有三个公共点时位置 关系如何?练习巩固: 1.如果三个平面两两相交,那么它们的 交线有多少条?交线有什么位置关系? 画出图形表示你的结论。 答:有可能1条,也有可能3条交线。 (1) (2) b α β γ a l (3) 相交于一条交线 三条交线 三条交线2.切割长方体 • 一个长方体切一刀可以分成多少块 ? • 一个长方体切两刀可以分成多少块 ? A B D C A′ D′ B′ 2 3或4课堂讨论3.不妨再思考一题? 1)、一个平面把空间分为几部分? 2)、二个平面把空间分为几部分? 2 3或43. 3个平面把空间分成几部分? 练习巩固: (2)(1) (3) (4) (5) 4 6 6 7 8 图形 文字语言(读法) 符号语言 A a A a 点在直线上 点在直线外 点在平面内 点在平面外 (1)空间中点与线、点与面的位置关系 归纳总结 图形 文字语言(读法) 符号语言 a∥b (2)空间中线与线的位置关系 两直线不共面且无 公共点两直线异面 两直线共面且有一个 公共点两直线相交 两直线共面且无公 共点两直线平行 a、b异面 aIb=Ab a A b a b a 图形 文字语言(读法) 符号语言 a A a a∥ (3)空间中线与面的位置关系 直线上所有的点都在 平面内直线在平面内 直线与平面有一个公 共点直线与平面相交 直线与平面无公共点 直线与平面平行 a a a a 图形 文字语言(读法) 符号语言 (4)空间中面与面的位置关系 两个平面有一公共直线 两个平面相交 两个平面无公共点 两个平面平行 α∥β α β• 截面问题 绿色通道

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料