2020高考文科数学二轮专题辅导通用版课件:高考专题 数列 等差数列与等比数列
加入VIP免费下载

2020高考文科数学二轮专题辅导通用版课件:高考专题 数列 等差数列与等比数列

ID:491871

大小:1.54 MB

页数:50页

时间:2020-12-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
专题  数  列 等差数列、等比数列 考向一 等差数列、等比数列的基本量计算 (保分题 型考点) 【题组通关】 1.(2019·北京高考)设等差数列{an}的前n项和为Sn,若 a2=-3,S5=-10,则a5=________,Sn的最小值为 ________. 【解析】设公差为d,a2=a1+d=-3,S5=5a1+ d=-10, 即a1+2d=-2,解得a1=-4,d=1,所以a5=a1+4d=0,Sn=na1+ ,当n=4或5时,Sn最小,为-10. 答案:0 -10 2.已知等比数列{an}的公比为q,记bn=am(n-1)+1+ am(n-1)+2+…+am(n-1)+m,cn=am(n-1)+1·am(n-1)+2·…· am(n-1)+m(m,n∈N*),则以下结论一定正确的是 (  ) A.数列{bn}为等差数列,公差为qm B.数列{bn}为等比数列,公比为q2m C.数列{cn}为等比数列,公比为 D.数列{cn}为等比数列,公比为 【解析】选C.bn=am(n-1)+1·(1+q+q2+…+qm-1), =qm, 故数列{bn}为等比数列,公比为qm,选项A,B错误; cn= ·q1+2+…+(m-1), =(qm)m= , 故数列{cn}为等比数列,公比为 ,D错误,故选C. 3.(2019·重庆二模)已知数列{an},an>0, 它的前n项和 为Sn,且2a2是4a1与a3的等差中项.若{an}为等比数列 ,a1=1,则S7=________. 【解析】设数列{an}的公比为q,依题意有a1=1,4a2=4a1 +a3,即4q=4+q2,故q=2,则S7= =127. 答案:127 【题型建模】 1.求等差、等比数列的基本量:利用等差、等比数列通项公式及前n项和公式求基 本量项 2.求代数式的值:根据等比数列的通项公式求代数式的值 3.等差中项及等比数列前n项和的综合应用 【拓展提升】 1.两组重要公式 (1)等差数列:①Sn= ; ②am=an+(m-n)d;③若第m,n,p项成等差数列, 则2an=am+ap. (2)等比数列:①Sn= ②am=an·qm-n; ③若第m,n,p项成等比数列,则 =am·ap. 2.等差(比)数列的运算技巧 ①在进行等差(比)数列项与和的运算时,若条件和结论 间的联系不明显,则均可化成关于a1和d(q)的方程组求 解;②要注意消元法及整体计算,以减少计算量. 考向二 等差数列、等比数列的性质 (保分题型考点 ) 【题组通关】 1.等差数列{an}中,a1+3a8+a15=120,则2a9-a10的值是 (  ) A.20 B.22 C.24 D.-8 【解析】选C.因为a1+3a8+a15=5a8=120,所以a8=24, 所以2a9-a10=a10+a8-a10=a8=24. 2.(2019·银川一模)已知各项不为0的等差数列{an}满 足2a2- +2a12=0,数列{bn}是等比数列,且b7=a7,则 b3b11等于 (  ) A.16 B.8 C.4 D.2 【解析】选A.由等差数列性质得a2+a12=2a7,所以4a7- =0,又a7≠0,所以a7=4,b7=4,由等比数列性质得b3b11= =16. 3.已知数列{an}是等比数列,数列{bn}是等差数列,若a1·a6·a11=3 ,b1+b6+b11=7π,则 的值 是(  ) 【解析】选D.{an}是等比数列,{bn}是等差数列,且a1·a6·a11=3 ,b1+b6+b11=7π,所以 ,3b6= 7π, 所以a6= ,b6= , 所以 = 4.(2019·西安一模)各项均为正数的等比数列{an}的 前n项和为Sn,若Sn=2,S3n=14,则S4n等于 (  ) A.80 B.30 C.26 D.16 【解析】选B.由等比数列性质知Sn,S2n-Sn,S3n-S2n,S4n- S3n,…仍为等比数列,设S2n=x,则2,x-2,14-x成等比数 列. 由(x-2)2=2×(14-x),解得x=6或x=-4(舍去). 所以S2n=6,Sn,S2n-Sn,S3n-S2n,S4n-S3n,…是首项为2, 公比为2的等比数列. 又因为S3n=14,所以S4n=30. 5.若等差数列{an}满足a7+a8+a9>0,a7+a100, 所以a8>0.又a7+a10=a8+a9 ,即λ≥0. 综上,λ的取值范围为[0,+∞). 答案:[0,+∞) 【题眼直击】 题目 题眼 思维导引 1. ① 向量三点共线的条件,想到向量等式的系数和 为1. 2. ② 由连续三项的积,想到用等比中项求a4 ③ 同底对数和,想到对数运算性质 3. ④ 方程左右两端的特点想到两端同除以n(n+2) ⑤ 相邻两项的大小关系,想到分离参数 【拓展提升】 数列与其他知识的交汇问题的处理思路  (1)以数列知识为纽带,在与函数、方程、向量不等 式的交汇处命题,利用函数观点、方程思想、向量的性 质、不等式的性质等.作为解题口解决问题. (2)数列的项或前n项和可以看作关于n的函数,然后利 用函数的性质求解数列问题. (3)数列中的恒成立问题可以通过分离参数,通过求数 列的值域求解. 【变式训练】 1.正项等比数列{an}中,a2=8,16 =a1a5,则数列{an}的 前n项积Tn中的最大值为 (  ) A.T3 B.T4 C.T5 D.T6 【解析】选A.设正项等比数列{an}的公比为q(q>0),则 16 =a1a5=a2a4=8a4,a4= ,q2= ,又q>0,则q= ,an=a2qn -2=8× =27-2n,则Tn=a1a2…an= 25+3+…+(7-2n)=2n(6-n),当n=3时,n(6-n)取得最大值9,此 时Tn最大,即(Tn)max=T3. 2.若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5, 则ln a1+ln a2+…+ln a20=__________. 【解析】因为a10a11+a9a12=2a10a11=2e5,所以a10a11=e5.所 以ln a1+ln a2+…+ln a20=ln(a1a2…a20)= ln[(a1a20)·(a2a19)·…·(a10a11)]=ln(a10a11)10= 10ln(a10a11)=10ln e5=50ln e=50. 答案:50 3.等比数列{an}的首项为2,公比为3,前n项和为Sn. 若log3 =9,则 取最小值时,S2=______. 【解析】由题意可得an=2×3n-1,Sn= =3n-1, 所以log3 =log33n+4m-1=n+4m-1=9, 所以n+4m=10,所以 当且仅当m=n时取等号, 所以n=2,所以a2=2×3=6,所以S2=2+6=8. 答案:8

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料