七年级数学下册第4章相交线与平行线4-1平面上两条直线的位置关系4-1-1相交与平行课件(湘教版)
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第4章 相交线与平行线 4.1 平面上两条直线的位置关系 4.1.1 相交与平行 【知识再现】 将线段向两个方向_____________就形成了直线.直线 没有_________.  无限延长 端点 【新知预习】阅读教材P72-P74,解决以下问题: 1.相交线与平行线 (1)在同一平面内的两直线有三种位置关系:_________、 _________、既不相交也不重合.  (2)定义:①重合:如果两条直线有_________公共点,那 么它们一定重合.  相交 重合 两个 ②相交线:在同一平面内,有且只有一个___________的 两条直线.这个公共点就是它们的_________.  ③平行线:在同一平面内,没有___________的两条直线. 平行用符号“_______”表示.  公共点 交点 公共点 ∥ 2.平行线的基本事实及其推论 (1)基本事实:过直线外一点_____________一条直线与 这条直线平行.  (2)推论:平行于同一条直线的两条直线_________,即如 果a∥b,c∥b,那么_________.  有且只有 平行 a∥c 【基础小练】 请自我检测一下预习的效果吧! 1.下列生活实例中,属于平行线的是_________________.  (1) 交通道口的斑马线.(2)天上的彩虹.(3)体操的纵 队.(4)百米跑道线.(5)火车铁轨线. (1)(3)(4)(5) 2.两条平行线和第三条直线相交,一共有_______个交 点.  3.如图: 两 因为b∥a,c∥a (已知),所以_________(平行于同一条直线的两条直线 平行).  b∥c 知识点一 平行线及其画法 (P78习题4.1A组T3拓展) 【典例1】读下列语句,并画出图形: (1)已知P是四边形ABCD内部的一点,过P作AB和BC的平 行线. (2)过D点作DE∥AB交BC于E点. 【自主解答】(1) (2) 【学霸提醒】 平行线的画法口诀 一“落”:三角板的一边落在已知直线上; 二“靠”:用直尺紧靠三角板的另一边; 三“移”:沿直尺移动三角板,直至落在已知直线上的 三角板的一边经过已知点; 四“画”:沿三角板过已知点的边画直线. 【题组训练】 1.如图所示,能相交的是_______,一定平行的是_______. (填图形序号)  ③ ⑤ ★2.如图,根据要求画图并填空. (1)过点A作AE∥BC,交_______于点E.  (2)过点B作BF∥AD,交_______于点F.  (3)过点C作CG∥AD,交_______的延长线于点G.  (4)过点D作DH∥BC,交_______的延长线于点H.  CD CD AB BA ★★3.找出图中哪些线段是互相平行的? 解:AB∥GI,DE∥HJ,AC∥HF 知识点二 平行线的基本事实及其推论 (P74练习T1拓展) 【典例2】如图,如果CD∥AB,CE∥AB,那么C,D,E三点是 否共线?你能说明理由吗? 【思路点拨】根据“过直线外一点有且只有一条直线 与已知直线平行”解答. 【自主解答】C,D,E三点共线.理由如下:因为过直线AB 外一点C有且只有一条直线与AB平行,CD,CE都经过点C 且与AB平行,所以点C,D,E三点共线. 【学霸提醒】 1.“过直线外一点有且只有一条直线与已知直线平行 ”是我们后续学习中证明平行线的原始依据. 2.平行公理的含义 (1)“有”——存在性,即存在一条与已知直线平行的 直线. (2)“只有”——唯一性,即与直线平行的直线是唯一 的. 【题组训练】 1.如图,因为直线AB,CD相交于点P,AB∥EF,所以CD不 平行于EF(_____________________________________ ___________).  过直线外一点有且只有一条直线与已知 直线平行 ★★2.如图是一个风车示意图,如果CD旋转到与地面水 平线EF平行的位置,AB能同时与地面水平线EF平行吗? 试用学过的知识说明为什么? 解:不能,因为过点O只有一条直线与已知直线EF平行, 所以AB,CD不能同时与已知直线EF平行. ★★3.如图,P是三角形ABC内部的任意一点. (1)过P点向左画射线PM∥BC交AB于 点M,过P点向右画射线PN∥BC交AC于点N. (2)在(1)中画出的图形中,∠MPN的度数一定等于 180°,你能说明其中的道理吗? 【解题指南】在(1)中,按照过直线外一点画已知直线 的平行线的方法画图即可. 在(2)中,要说明∠MPN=180°,可转化为说明点M,P,N在 同一条直线上. 解:(1)画出的射线PM,PN,如图. (2)因为射线PM∥BC,射线PN∥BC, 所以直线PM∥BC,直线PN∥BC. 根据平行线基本事实:经过直线外一点,有且只有一条 直线与这条直线平行, 可知直线PM与直线PN是同一条直线, 即点M,P,N在同一条直线上. 所以∠MPN=180°. 【火眼金睛】 在同一平面内若线段AB与CD没有交点,则AB与CD一定平 行吗?为什么? 【正解】不一定.在同一平面内,线段AB与CD没有交点, 则线段AB与CD可能平行,也可能不平行. 【一题多变】 如图所示. (1)过点C能画出几条与直线AB平行的直线? (2)过点D与直线AB平行的直线与(1)中所画的直线平行 吗? (3)由(2)你发现了什么结论? 解:(1)一条. (2)平行. (3)平行于同一条直线的两条直线互相平行. 【母题变式】 【变式一】如图,直线a,点B,点C. (1)过点B画直线a的平行线,能画几条? (2)过点C画直线a的平行线,它与过点B的平行线平行吗 ? 解:(1)如图,过直线a外的一点画直线a的平行线,有且 只有一条直线与直线a平行. (2)过点C画直线a的平行线,它与过点B的平行线平行. 理由如下: 因为b∥a,c∥a,所以c∥b. 【变式二】如图,将一张长方形硬纸片对折,MN是折痕, 把面ABNM平放在桌面上,另一个面CDMN不论怎样改变位 置,试探索AB与CD的位置关系,并说明理由. 解:AB∥CD.理由: 因为MN为长方形纸片对折的折痕, 所以MN∥AB,MN∥CD, 所以AB∥CD.

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料