数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
2.3 双曲线
2.3.2 双曲线的简单几何性质
第一课时 双曲线的简单几何性质
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
自主学习 新知突破
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
1.通过双曲线的方程和几何图形,了解双曲线的对称
性、范围、顶点、离心率等简单几何性质.
2.了解双曲线的渐近线,并能用双曲线的简单几何性
质解决一些简单的问题.
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
双曲线是生活的缩影,如果把生活的点点滴滴投射至无
色的纸张中,那么双曲线便是一件无法雕饰的艺术品,只有相
对的实轴,没有绝对的虚轴.人生有太多捉不到回忆的遗憾,
绝少完美.梦的延伸受着渐近线的控制,永远离不开追逐完美
的羁绊.每段人生都会有一个焦点,美好的人生也好,悲惨的
人生也罢,都会由这个焦点主宰着我们的生活,没有昨天和今
天,只有未来和希望.
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
[问题1] 双曲线的对称轴、对称中心是什么?
[提示1] 双曲线的对称轴为坐标轴,对称中心是坐标
原点.
[问题2] 双曲线的渐近线方程是什么?
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
双曲线的几何性质
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
(±c,0) (0,±c)
2c
x≥a或x≤-a y≥a或y≤-a
关于x轴,y轴对称,关于原点中心对称
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
(±a,0) (0,±a)
2a 2b
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
_______和________等长的双曲线叫做等轴双曲线.
等轴双曲线
实轴 虚轴
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
答案: D
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
答案: 2
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
合作探究 课堂互动
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
求双曲线9y2-16x2=144的实半轴和虚半轴长、
焦点坐标、渐近线方程.
已知双曲线方程求其几何性质
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
1.求双曲线9y2-4x2=-36的顶点坐标、焦点坐标、
实轴长、虚轴长、离心率和渐近线方程,并作出草图.
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
求适合下列条件的双曲线的标准方程:
由双曲线的几何性质求标准方程
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
思路点拨: (1)(2)可用待定系数法求出a,b,c后求方
程;
(3)可以利用渐近线的方程进行假设,或者讨论焦点所
在的坐标轴,再根据已知条件求相应的标准方程.
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
注意:此时的a,b不一定等同于标准方程中的a,b.
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
求双曲线的离心率
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
双曲线的离心率问题主要有两种,一是求离
心率,二是求离心率的取值范围.求圆锥曲线的离心率的关键
是探寻a与c的关系.在探寻过程中,要充分挖掘各种隐含条件,
结合图形与圆锥曲线的定义,并要综合运用各种知识,只有这
样才能做到“心有灵犀一‘点’通”,找到最优解法,提高解
题速度.
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数 学
选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
【错因】 忽略了条件P(a,b)在双曲线的左支上,若P
在双曲线的左支上,则a-b