高二数学人教A版选修2-1课件:1.2.2 充要条件(共24张ppt) .ppt
加入VIP免费下载

高二数学人教A版选修2-1课件:1.2.2 充要条件(共24张ppt) .ppt

ID:503303

大小:1.42 MB

页数:24页

时间:2020-12-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1.2.2 充要条件引入1 已知 p:整数a是6的倍数, q:整数a是2和3的倍数, 那么,p是q的什么条件?在上述问题中, p  q,所以p是q的充分条件,q是p的 必要条件. 另一方面, q  p,所以p也是q的必要条件,q也是p的 充分条件. 引入2 “在△ABC 中,p: AB=AC, q:  B= C”,那么,p是q的什么条件? 解:p  q,所以p是q的充分条件,q是p的 必要条件.另一方面,q  p,所以p也是q的 必要条件,q也是 p的充分条件. 你发现了什么?1.掌握充分必要条件的意义,能够判定给定的 两个命题的充要关系.(重点) 2.能正确判断是充分条件、必要条件还是充要 条件.(难点) 3.培养学生的逻辑思维能力及归纳总结能力. 4.在充要条件的教学中,培养等价转化思想. 1.充分条件与必要条件的含义分别是什么? 如果“ p  q ”,则称p是q的充分条件, 且q是p的必要条件. 探究点1 充要条件的含义 2.对于两个语句,p可能是q的充分条件,p也 可能是q的必要条件,除此以外p与q之间的逻辑关 系还有哪些可能?一般地,如果既有p  q,又有q  p, 就记作 p q. 此时,我们说,p是q的充分必要条件, 简称充要条件(sufficient and necessary condition). 概念!显然,如果p是q的充要条件, 那么q也是p的充要条件. 概括地说,如果p ⇔ q, 那么p与q互为充要条件.判一判 判断p是q的什么条件,并填空: (1) p: x 是整数是 q:x是有理数的 ; (2) p: ac=bc是 q:a=b的 ; (3) p: x=3 或x=-3是 q:x2=9 的 ; (4) p:同位角相等是 q:两直线平行的 ; (5) p:(x-2)(x-3)=0 是 q:x-2=0 的 . 充分不必要条件 充要条件 充要条件 必要不充分条件 必要不充分条件 你能举出一些p和q互为充要条件的例子吗? 比一比探究点2 判断充分条件、必要条件的方法 若 ,且 ,则p是q的充分不必要条件; 若 ,且 ,则p是q的必要不充分条件; 若 ,且 ,则p是q的充要条件; 若 ,且 ,则p是q的既不充分也不必要 条件. 【1】直接用定义判断原命题为真逆命题为假; p是q的充分不必要条件, p是q的必要不充分条件, 原命题为假逆命题为真; 【2】利用命题的四种形式进行判定 p是q的既不充分也不必要条件, p是q的充要条件, 原命题、逆命题都为真; 原命题、逆命题都为假. 例3 下列各题中,哪些p是q的充要条件. (1)p:b=0, q:f(x)=ax2+bx+c是偶函数; (2)p:x>0,y>0,q:xy>0; (3)p:a>b,q:a+c>b+c; (4)p:两直线平行; q:两直线的斜率相等. 充要条件 充分不必要条件 充要条件 既不充分也不必要条件例4 已知⊙O 的半径为r,圆心O到 直线l的距离为d. 求证 d = r是直线 l 与⊙O 相切的充要条件. l O 如图所 示 dP Q l O 分析: 设:p:d=r,q:直线l与 相切. 要证p是q的充要条件,只需分别 证明充分性(p q)和 必要性(q p)即可.证明:如图所示. (1)充分性(p q): 作OP⊥l于点P则OP=d,若d=r,则点P在⊙O 上, 在直线l上任取一点Q(异于点P),连接OQ. 在Rt△OPQ中,OQ>OP=r. 所以,除点P外直线l上的点都在⊙O 的外部, 即直线l与⊙O仅有 一个公共点P. 所以直线l与⊙O 相切. P Q l O(2)必要性(q p): 若直线 l 与⊙O 相切,不妨设切点P, 则OP ⊥ l. 因此,d = OP = r . P Q l O 如图所 示A2.一元二次方程ax2+bx+c=0 (a≠0) 有一个正根和一个负根的充要条件是 ( ) A.ab>0 B.ab<0 C.ac>0 D.ac<0. D3.已知p,q都是r的必要不充分条件, s是r的充分不必要条件, q是s的充分不必要条件, 则(1)s是q的什么条件? (2)r是q的什么条件? (3)p是q的什么条件? 充要条件 充要条件 必要不充分条件 4.若A是B的必要而不充分条件,C是B的充要 条件,D是C的充分而不必要条件,那么D是A 的 .充分不必要条件充要条件的概念 : 既有p q,又有q p, 就记作 p q. 则 p 是 q 的充分必要条件, 简称充要条件.形如“若p,则q ”的命题中存在以下四种关系 : (1)p是q的充分不必要条件 (2)p是q的必要不充分条件 (3)p是q的充分必要条件 (4)p是q的既不充分又不必要条件 在学习上不肯钻研的人是不会提出问 题的;在事业上缺乏突破力的人是不会有 所创新的.

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料