高二数学人教A版选修2-1课件:1.3.1 简单的逻辑联结词(共21张PPT) .ppt
加入VIP免费下载

高二数学人教A版选修2-1课件:1.3.1 简单的逻辑联结词(共21张PPT) .ppt

ID:503603

大小:551 KB

页数:21页

时间:2020-12-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第一章 常用逻辑用语 §1.3 简单的逻辑联结词p q 串联电路 创设情景,引入新课 且:就是两者都要、都有的意思. p q 并联电路 或:就是两者至少有一个的意思(可兼有) 非:就是否定的意思 今后常用小写字母p,q,r,s,…表示命题。 探究新知,巩固练习 ★★ 1.3.1 且 (and) 下列命题中,命题间有什么关系? (1)12能被3整除; (2)12能被4整除; (3)12能被3整除且能被4整除; 1.问题1: 思考: 命题(3)是由命题(1)(2)使用联结词“且”联结得 到的新命题. 一般地,用联结词“且”把命题p和命题q联结起 来,就得到一个新命题,记作p∧q,读作“p且q” 2.问题2 思考:命题 p∧q的真假如何确定? 观察下列各组命题,命题p∧q的真假与p、q 的真假有什么联系? P:12能被3整除; q:12能被4整除; p∧q:12能被3整除且能被4整除; P:等腰三角形两腰相等; q:等腰三角形三条中线相等; p∧q:等腰三角形两边相等且三条中线相等. P:6是奇数; q:6是素数; p∧q:6是奇数且是素数.填空:一般地,我们规定:当p,q都是真命 题时,p∧q是 ;当p,q 两个命题 中有一个命题是假命题时,p∧q是 . 一句话概括: 全真为真,有假即假. 真命题 假命题 命题p∧q的真假判断方法: p q p ∧ q 真 真 真 假 假 真 假 假 假 假 假 真探究:逻辑联结词“且”的含义与集合 中学过的哪个概念的意义相同呢? 对“且”的理解,可联想到集合中 “交集”的概念. A∩B={x︱x∈A且x∈B}中的“且”, 是指“x∈A”、“x∈B”这两个条件都 要满足的意思 活动探究例1:将下列命题用“且”联结成新命题,并判断他们的 真假: (1)p:平行四边形的对角线互相平分, q:平行四边形的对角线相等; (2)p:菱形的对角线互相垂直, q:菱形的对角线互相平分; (3)p:35是15的倍数, q:35是7的倍数. (3) p∧q : 35是15的倍数且是7的倍数. ∵ p是假命题, ∴ p∧q是假命题. (1)p∧q:平行四边形的对角线互相平分且相等 .∵q是假命题,∴p∧q是假命题. (2)p∧q :菱形的对角线互相垂直且平分. ∵p、q都是真命题, ∴ p∧q是真命题. 例题分析 解: 有些命题如含有“……和……”、 “……与……”、“既……,又…..”等词的 命题能用“且”改写成“p∧q”的形式, 例2:用逻辑联结词“且”改写下列命题,并 判断它们的真假. (1)1既是奇数,又是素数; (2)2和3都是素数. 解:(1) 1是奇数且1是素数 , 假命题 (2) 2是素数且3是素数,真命题★★1.3.2 或 (or) 下列命题中,命题 间有什么关系? (1)27是7的倍数; (2)27是9的倍数; (3)27是7的倍数或是9的倍数. 1.问题1 : 思考: 命题(3)是由命题(1)(2)使用联结词“或”联结 得到的新命题. 一般地,用联结词“或”把命题p和命题q联结起 来,就得到一个新命题,记作p∨q,读作“p或q”.思考:命题 p∨q的真假如何确定? 观察下列三组命题,命题p∨q的真假与p、q 的真假有什么联系? P:27是7的倍数; q:27是9的倍数; p∨q :27是7的倍数或是9的倍数. P:等腰梯形对角线垂直; q:等腰梯形对角线平分; p∨q:等腰梯形对角线垂直或平分. P:三边对应成比例的两个三角形相似; q:三角对应相等的两个三角形相似; p∨q:三边对应成比例或三角对应相等的两 个三角形相似. 一般地,我们规定:当p,q两个命题中 有 个命题是真命题时,p∨q是 命题; 当p,q两个命题都是假命题时,p∨q 是 命题. 一句话概括: 有真即真, 全假为假. 一 真 假 命题p∨q的真假判断方法: p q p∨q 真 真 真 假 假 真 假 假 假 真 真 真探究:逻辑联结词“或”的含义与集 合中学过的哪个概念的意义相同呢? 对“或”的理解,可联想到集合中“并集”的概念 .A∪B={x︱x∈A或x∈B}中的“或”,它是指 “x∈A”、“x∈B”中至少一个是成立的,即x∈A且 x B;也可以x A且x∈B;也可以x∈A且x∈B. 活动探究例3:判断下列命题的真假: (1)2≤2; (2)集合A是A∩B的子集或是A∪B的子集; (3)周长相等的两个三角形全等或面积相等的两个三 角形全等. 解:(1)p:2=2 ;q:2

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料