高中数学人教A版选修1-1课件:2.2.2《双曲线的简单几何性质》
加入VIP免费下载

高中数学人教A版选修1-1课件:2.2.2《双曲线的简单几何性质》

ID:504472

大小:1.31 MB

页数:24页

时间:2020-12-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2.3.2 双曲线的简单几何性质(1) 2.2 双曲线 通过动画展示通风塔的截面图是双曲线,培养学生善 于观察,热爱生活的良好品质,同时激发了学生探索新知 的欲望,充分调动学生学习的积极性和主动性. 运用类比 的思想,类比椭圆的性质学习双曲线的性质,注意双曲线的 性质比椭圆多一个渐进线的性质. 例1是探讨双曲线的常见性质;例2是求通风塔的形状 双曲线方程;双曲线和之前学的椭圆有很多相似之处,也 有很多区别,在教学过程中着重采用了双曲线和椭圆对比、 对照的方式讲解.其一是便于学生理解,其二是通过对比、 对照让学生记忆深刻,不易混淆. 通风塔与双曲线 | |MF1|-|MF2| | =2a(0 < 2aa>0 e >1 e是表示双曲线开口大小的一个量,e越大开口越大! (1)定义: (2)e的范围: (3)e的含义: 几何画板展示离心率与 a,b,c及双曲线开口大小 的关系(拖动三角形的 端点使a,b,c变化) 5、渐近线 拖动下方中间的两个点绘制双曲线 图像,体会双曲线和渐近线的关系 焦点在x轴上的双曲线的几何性质 双曲线标准方程: Y X 1、范围:x≥a或x≤-a 2、对称性:关于x轴,y轴,原点对称。 3、顶点: A1(-a,0),A2(a,0) 4、轴:实轴 A1A2 虚轴 B1B2 A1 A2 B1 B2 5、渐近线方程: 6、离心率: e= x y o -a a b-b (1)范围: (2)对称性: 关于x轴、y轴、原点都对称 (3)顶点: (0,-a)、(0,a) (4)渐近线: (5)离心率: 或 或 关于 坐标 轴和 原点 都对 称 性 质双 曲 线 范围 对称性 顶点 渐近线 离心率图象 解:把方程化为标准方程 可得:实半轴长a=4 虚半轴长b=3 焦点坐标是(0,-5),(0,5) 离心率: 渐近线方程: 半焦距c= 534 22 =+ 典例展示 例1 .求双曲线 的实半轴长,虚半轴长, 焦点坐标,离心率,渐近线方程。 例2、双曲线型自然通风塔的外形,是双曲线的一部分绕其 虚轴旋转所成的曲面,它的最小半径为12m,上口半径为 13m,下口半径为20m,高55m.选择适当的坐标系,求出此  双曲线的方程(精确到1m). A′ A0 x C′ C B′ B y 13 12 20 3.如图,ax-y+b=0和bx2+ay2=ab(ab≠0)所表示 的曲线只可能是(  ) B  C 12 =+ b y a x 2 22 ( a> b >0) 12 2 2 2 =- b y a x ( a> 0 b>0) 222= + ba (a> 0 b>0) c222= - ba (a> b>0) c y XF1 0 F2 M X Y 0F1 F2 p 椭 圆 双曲线 方程 a b c关系 图象 关于x轴、y轴、原点对称 图形 方程 范围 对称性 顶点 离心率 A1(- a,0),A2(a,0) A1(0,-a),A2(0,a) 关于x轴、y轴、原点对称 渐近线 .. y B2 A1 A2 B1 xO F2F1 x B1 y O . F2 F1 B2 A1 A2 . F1(-c,0) F2(c,0) F2(0,c) F1(0,-c) 的渐近线是直线y 知识要点: 技法要点: 课后练习 课后习题 THANKS!THANKS!

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料