两位数乘两位数教学设计
加入VIP免费下载

两位数乘两位数教学设计

ID:516175

大小:8.18 KB

页数:5页

时间:2020-12-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
【教学目标】 1.通过学生小组合作、自主探索两位数乘两位数(不进位)口算和笔算方法的活动,使学生经历理解算理的过程,以逐步掌握算法。 2.通过交流不同的计算方法,感受计算两位数乘两位数(不进位)方法的多样性,同时在算法优化的过程中进一步理解算理。 3.在探索算法和解决问题的过程中,感受数学与生活的联系,增强自主探索的意识,提高交流合作的能力,获得成功的体验,树立学习的信心。 【教学重点】探索两位数乘两位数(不进位)的算法,理解算理,初步形成计算技能。 【教学难点】理解“用十位去乘”时得数的写法及道理。 【教学过程】 一、引出问题 ⑴师:上节课我们已经欣赏了美丽的街景,有同学提出了这样一个问题:广场前的每根灯柱上有23盏灯,有这样的12根灯柱。一共有多少盏灯?这节课我们就来解决这个问题。 ⑵根据信息和问题列出算式,并简单说一说列式的根据——要求一共有多少盏灯,就是求12个23是多少。(板书:23×12) ⑶找该算式和以前学过的乘法算式有什么不同?(使学生明确知识的发展点。) 板书课题:两位数乘两位数 (设计意图:在前面打磨的过程中,有老师提出这是两位数乘两位数的第二课时,有关寻找信息、提出问题的过程在上一节课中已经完成,本节课可以直接出示上节课未解决的问题,省出时间探索算法、理解算理,提高教学的针对性和有效性。) 二、理解算理,探索算法 1.估算 ⑴让学生先估一估23×12的得数。(学生估算的结果可能是200、230或者240。) ⑵引导学生想一想:23×12的实际得数比估算出来的数大还是小?为什么? (设计意图:①在试算之前,先让学生进行估算,主要是引导学生联系上节课所学的两位数乘整十数来分析23乘12的结果大约是多少,从而为他们准确计算提供依据——在估算的过程中学生很自然的想到把12看成10,估算出的得数230,是10个23的和,还有2个23没算在里面,为下面口算准确得数渗透一些方法,实际上这也是新知识的一个生长点。②用估算的方法来确定积的大致范围,可以帮助学生验证计算的结果,培养学生用估算验证的意识。) 2.口算 ⑴师:这道题的准确得数到底是多少?请同学们开动脑筋,看能不能利用以前学过的知识计算出这道题的得数? 把计算的过程简要写到练习本上,遇到困难时,可以利用老师给你提供的图(23行12列的点子图)圈一圈、想一想,也可以和小组同学交流一下。 ⑵师巡视指导。(个别学生可能想不出如何转化,老师可个别启发引导:23×12表示12个23,我们能不能把12个23分开来算呢?先算10个23再算2个23,然后再合起来) ⑶交流算法。 学生可能会出现的算法: A:23×10=230    23×2=46    230+46=276 B:20×12=240    3×12=36   240+36=276 C:23×9=207 23×3=69 207+69=276 D:23×6=138 138×2=276 …… 在交流的过程中,引导学生利用点子图圈一圈,每个算式算的是哪部分? ⑷找算法的共同点,初步理解算理。 请学生说一说这些算法的共同点。(实际都是把12个23或23个12分开来求,因为分开之后能转化成以前学过的算式) ⑸小结:同学们真善于动脑筋,我们遇到了一个两位数乘两位数的算式,是以前我们没学过的,大家想到了把它转化成我们学过的两位数乘一位数和两位数乘整十数的算式,并且将所得的结果进行相加,从而解决了新的问题。看来遇到新的问题的时候,想办法把它转化成我们以前学过的旧知识,的确是一个很好的学习方法。 3.笔算 ⑴请学生试着用竖式计算23×12,遇到困难可以和小组的同学一起商量。 ⑵学生试做,师巡视指导。 ⑶展示交流。 学生可能会出现的算法:   (设计意图:引导学生经历将口算的横式写成竖式的形式,将几个竖式合并,再将竖式进一步简化的过程。同时在此过程中学生也很清晰的看出每一部分的来龙去脉,更容易的理解算理。) 4.进一步明算理 引导学生分别说一说46是怎么来的?表示什么?23表示什么?怎么来的?尤其要明确23写在百位和十位上就是表示23个十,也就是230。 (设计意图:抓住关键,进一步明晰算理。) 5.规范计算过程 师生共同梳理计算的过程。           2 3       ×1 2 师:先用个位上的2和23相乘。(板书)          2 3         ↖↑       × 1 2          4 6 师:再用十位上的1和23相乘。一三得三,3写在哪里?为什么? 师:在十位下面写3就表示3个十了。一二得二,2写在哪?为什么?          2 3         ↑↗       ×1 2         4 6       2 3      2 7 6 师:竖式中的46是怎么来的?23实际上是多少?它是怎么来的? (板书:23×2和23×10)         2 3         ↖↑       ×1 2         4 6——23×2       2 3   ——23×10       2 7 6 (设计意图:清晰再现计算过程,进一步明确算法。) 6.练习 独立用竖式计算21×43,集体订正时说一说计算过程以及每一步分别是怎么算出来的。 (设计意图:紧扣新知,及时巩固。) 三、巩固练习 1.根据竖式写得数。 师:你是从竖式中的哪一部分看出来的? (设计意图:进一步巩固算理。) 2.你能很快判断出对错吗? 42×21=126(出示横式,不出竖式) (学生可能根据个位上的数进行判断,也可能利用估算进行判断) 找错因,明算理。(出示竖式) (设计意图:有老师提出练习量小的问题,我个人认为本节课探索算法、理解算理的过程需充分展开,后面供练习的时间是很有限的,这些练习也不一定能处理完。一节课的时间是有限的40分钟,要抓住重点内容充分展开、透彻理解,至于计算技能的形成,后面肯定还要安排1—2课时专门进行相关练习,所有过程不可能在一节课中全部展示。) 四、总结 师:你觉得在用竖式计算两位数乘两位数时应注意什么? 师:是呀,在用个位上的数去乘时,得数的末位要和个位对齐,用十位上的数去乘时,得数的末位就要和十位对齐。 师:你还有哪些收获呢?(比如:转化的方法,横式变竖式的过程等) (设计意图:在打磨过程中,有老师提出总结不应仅仅总结算法,还应总结学习方法上的收获。)

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料