《最大公因数》教学反思【1】这节课,我从学生已有的知识和经验出发,精心设计一个童话情境,激发了学生的学习欲望。先让学生动手操作、自学讨论,帮助王叔叔选择地板砖。再思考探索正方形地板砖的边长与长方形地面的长、宽之间的关系。然后用问题的形式,通过复习16 和 12 的因数,让学生再找两个数的因数、找两个数的公有的因数、找两个数公有的因数中最大的因数的过程中,发现用边长1厘米、2厘米、4厘米的正方形都正好铺满长16厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、4这些数和16、12有什么关系,同时揭 示公因数和最大公因数的概念。 总之,我在教学的过程中,不但复习巩固旧知,让学生在不知不觉中学会了新知。而且还让学生带着自己的数学现实参与数学课堂,不断地利用原有的经验背景对新的问题做出解释。此过程中我还注意了鼓励每一个学生参与探索,重视引发学生思考,注重学生间的交流,让学生用自己的语言表述自己的发现,对于有困难的学生,我从方法上作进一步指导,小组长帮助,生生互帮等。以“学生是学习的主人,教师是数学学习的组织者、引导者与合作者为主。培养了学生动手操作的能力,使他们在愉快的学习氛围中学会了本节课的内容。【2】最大公因数”这节课是在学生掌握了因数、倍数、找因数的基础上进行的,通过找公因数的过程最大公因数,让学生懂得找公因数的方法。在此基础上,引出公因数和最大公因数的概念,为了加深理解,引导学生观察分析、讨论,让学生明确找两个数公因数的方法,并对找有特征的数字的最大公因数的特殊方法有所体验。寻求求最大公因数的方法,我发现学生找最大公因数比较慢,用列举法一步一步地找,说明知识与技能目标虽已达成,但在过程与上稍薄弱。在学生建构新知识的过程中,虽然从因数进行了正迁移,但探究方向是教师既定的。也就是说,在这样的课堂中,虽然有探究学习的形式存在,但探究内容却是在教师的步步引导下完成的,学生没有探究的方向和主动权。于是,我采用了激发兴趣,在这一环节,使学生产生了急于探究最大公因数方法的想法,在设疑中带着各自不同层面的问题进行探究。大部分学生用“列举法”找到公因数后,有的学生已有一定的经验,从一个数的因数中挑另一个数的因数,是一种“筛选法”思想的体现,优化了列举法。还有的学生用短除法求最大公因数,不仅速度快,而且准确率比较高。学生采用各自不同的方法求最大公因数,使得课堂气氛较活跃。与此同时我还将最大公因数融入生活实际。把找公因数的问题融入实际生活情景中,比如:“有两根绳子,一根长12米,另一根长18米,要把它们截成同样长的小段,而且没有剩余,每段最长应是几米?一共截几段?”这时学生理解了求最大公因数的方法和作用,就不难解决这一问题。结合生活实际,使学生真正体会到数学学习的价值,并清楚地知道“为什么学”,真正做到了生活知识数学化。 “因数和倍数”的知识,向来是小学数学教学的难点。它是在学生掌握了因数概念的基础上进行教学的。通过这节课的学习,学生会说出两个数的公因数和最大公因数,会求两个数的最大公因数,并为后面学习分数的约分打好基础。一节公开课我讲了《找最大公因数》,反思这节课我认为有以下几个问题: 一、精心设计导学案,让学生大胆探究。1、课前热身:在课的开始复习了一个数的因数有什么特点?(一个数的因数最小是1,最大是它本身,一个数的因数的个数是有限的。)通过小活动唤醒学生的旧知,以便于更好地过度和接受新的知识。2、导入环节:我从学生已有的知识和经验出发,精心设计一个铺地砖的情境,激发了学生的学习欲望,帮助王叔叔选择地板砖。让学生在获取新知的同时,切实体会到数学来源于生活,服务于生活,体会到数学与生活的密切联系。3、在自主学习中,我单刀直入,让学生完成课本里12和18的因数,,然后填进圆圈里,重要的是当两个圆圈交在一起时,学生无法理解圆圈的意思,这个步骤,得引导学生说出:交叉在一起的圆圈是共有的数字(也就是公因数),外面部分是填上独有的数字,当共有的数字写完后,不要再把共有的写在外面。值得一提的是新教材没有出现短除法,但我觉得短除法相对简单,所以例举法完成后,我还是把短除法介绍给学生,让学生自己选择最佳的找最大公因数的途径吧!《数学课程标准》指出:“学生是学习的主人,教师是数学学习的组织者、引导者与合作者。”在本节课中,我努力将找最大公因数的概念教学课,设计成为学生探索问题,解决问题的过程,各个环节的学习流程,体现了教师是组织者——提供数学学习的材料;引导者——引导学生利用各种途径找到公因数,最大公因数;合作者——与学生共同探讨规律。在整个教学的过程中,学生真正成了课堂学习的主人,寻找最大公因数的方法是通过学生积极主动地探索以及不断地中验证得到的,所以整节课学生个性得到发挥。二、找出不足,以便提高我认为这节课还算是比较成功,可是从导学案上来看,内容很少也很简单,并且学生展示方法少,可我却用了两节课才完成任务。所以,我一直困惑的是:为什么我不能按进度高效率的完成教学任务呢?这一直是我在教学中存在和感到困惑的问题。我想还是我在处理某些课堂环节上浪费了时间,本来有些问题可以不必让学生讨论,而我却是什么问题都要学生讨论,非得让他们自己得出结论不可。对于有些概念,完全可以让学生探索归纳,然后老师总结得出。不必要非得让学生自己得出概念。四:公因数与最大公因数的知识的教学,课前我首先做了若干边长分别为6厘米和4厘米的正方形和一个长为18厘米宽为12厘米的长方形,复印后发给学生,每桌一份。通过让学生操作来理解公因数的含义。操作前让学生先默想一下:哪种纸片能将长方形正好铺满?再让学生操作验证。这样学生带着目的去操作,就避免了操作的盲目性。接着我顺势引导学生讨论:“还有哪些边长是整厘米数的正方形纸片也能正好铺满这个长方形?”学生回答:“边长1厘米、2厘米、3厘米的正方形也能将这个长方形正好铺满!”我引导学生比较:“为什么边长1厘米、2厘米、3厘米、6厘米的正方形能将这个长方形铺满,而边长4厘米却不能呢?”学生异口同声地回答:“因为4是12的因数却不是18的因数!”我问:“那这些能铺满的正方形的边长1、2、3、6和12、18有什么关系吗?”比较自然地得出:“既是12的因数也是18的因数。也就是12和18的公因数。”对公因数的含义理解得还是比较到位的!这样地过渡,解决了两个问题:一是引出怎样找两个数的公因数,二是使学生明确了两个数的公因数的个数是有限的,并和公倍数的概念进行了区别! 在学生顺利地掌握了求两个数公因数以及最大公因数的方法后,我出了两个数8和84,学生按原来的方法找了两个数的因数后,有的学生在找84的因数时发生了错误,我说:“找84的因数确实比较困难,那么你们想想找8和84的公因数时有没有必要将84的因数全部找出来呢?”有一两个学生经过思考后说:“8和84的公因数其实只要在8的因数中找就行了!”但是在这里学生并不是很能理解,我讲得也不是很明确,另外本节课上的集合图,我处理得也比较生硬,是将两种方法讲了以后再引出的集合图,现在回过头来想想,是不是应该在讲完第一种方法后就引出集合图这样就比较自然了,而且也能加深对公因数意义的理解! 五:《数学课程标准》指出:“学生是学习的主人,教师是教学学习的组织者、引导者与合作者。”本课是在学生掌握了因数、倍数、找因数的基础上进行教学,通过找公因数的过程,让学生懂得找公因数的基本方法。在此基础上,引出公因数和最大公因数的概念,为了加深理解,可以进一步引导学生观察分析、讨论,让学生明确找两个数公因数的方法,并对找有特征的数字的最大公因数的特殊方法有所体验。在此过程中要注意鼓励每一个学生参与探索,重视引发学生思考,注重学生间的交流,让学生用自己的语言表述自己的发现,重要的是不要归纳成固定的模式让学生记忆。对于找公因数有困难的学生,教师要从方法上作进一步引导。在本节课中,我努力将找最大公因数的概念教学课,设计成为学生探索问题,解决问题的过程,这样设计各个环节的教学流程,体现了教师是组织者——提供数学学习的材料;引导者——引导学生利用各种途径找到公因数,最大公因数;合作者——与学生共同探讨规律。在整个教学的过程中,学生真正成了课堂学习的主人,所以整堂课学生个性得到发挥,课堂成了学生学习的乐园。本节课选择的题材知识性强,教学设计体现了趣味性、探索性和人文性。师生共同围绕一个知识情景展开自主探索和合作研究,使数学学习真正成了生动、活泼、主动和富有个性的过程。教学过程中,我认真地处理了数学思想和数学方法的关系,以数学思想来引领数学方法,有效的扩张了数学的发展性功能。在落实知识与技能目标的过程中,组织学生开展了积极有效的探索活动。充分激活了原有的知识基础,努力调动学生积极的学习情感,启发学生主动参与、引导学生感知——理解——构建,教师起了教学“支架”的作用,给予学生适时、适当、适量的帮助,使学生学会参与、学会发现、学会提高、学会应用,符合学生认知规律,满足学习体验需求。不足之处就是课堂气氛不浓,学困生的个性潜能没有得到发挥,参与活动少。