期末模拟试题(二)
一、填空。(每空2分,共38分)
1. 最高位是百万位的数是一个( )位数,其中最小的一个数是( )。
2. 一个三角形中,∠1= 30°,∠2=50°,那么∠3=( )°,这是一个( )三角形。
3. 如果□×(100+☆)=□×100+ □(□≠0),那么☆表示( )。
4. 一个等腰三角形的周长是20厘米,底边长为8厘米,这个等腰三角形的腰长是( )厘米。
5. 1095050是由( )个万和( )个一组成的,它的最高位是( )位,这个数读作( )。它省略“万”后面的尾数约是( )。
6. 一个三角形每条边的长都是整厘米数,其中两条边的长度分别是12厘米和8厘米,第三条边最长是( )厘米,最短是( )厘米。
7. 自行车运动员每天要骑车训练10小时,行300千米。某位运动员连续训练20天,一共行了( )千米。
8. 小云把☆×99误算成了☆×100-1,所得结果比正确结果大7,正确结果应该是( )。
9. A=9999×9999+9999,B=1000×10000,A与B相比,( )大。
7/ 7
10. A、B两个自然数的平均数是48,A数比B数大6,A、B两数分别是( )。
11. 如果A×B=16,那么(A×5)×B=( )。如果M×N=400,那么M×(N×6)=( )。
二、选择。(将正确答案的字母填在括号里。每题3分,共12分)
1. 小华量的三角形三个角的度数,合理的一组是( )。
A. 80°,40°,120°
B. 70°,60°,50°
C. 45°,55°,90°
2. 19999+9999×9999=( )。
A. 100×100 B. 1000×1000
C. 10000×10000
3. 等腰三角形中,有一个内角是30°,另外两个内角( )。
A. 一定是30°和120°
B. 一定都是75°
C. 可能是30°和120°,也可能都是75°
4. 计算器上的数字键“8”坏了,如果用计算器计算734-198,下面的方法不正确的是( )。
7/ 7
A. 734-200+2
B. 724-200-2
C. 735-199
三、操作题。(共14分)
1. 下图是小东家、小华家以及学校的平面图,请你观察图再回答问题。(8分)
(1)学校的位置用数对表示为( )。
(2)小华从家到学校的行走路线,用数对依次表示为(8,4)―→( )―→( ),在图中描出所走路线。(假设小华沿格线走)
2. 画一条高,把平行四边形分成一个三角形和一个梯形。(3分)
7/ 7
3. 画一条高,把等腰梯形分成两个完全一样的梯形。(3分)
四、解决问题。(共36分)
1. 两块同样长的花布,第一块卖出31米,第二块卖出19米后,第二块剩下的是第一块剩下的4倍,这两块花布原来各有多少米?(9分)
2. 一根铁丝正好围成一个边长16分米的等边三角形,现在把它围成一个平行四边形,已知平行四边形的一条边长为16分米,和它相邻的另一条边长是多少分米?(9分)
3. 小华和小红在环形跑道上跑步,跑道全长440米,两人同时从同一地点出发,反向而行。小华速度为6米/秒,小红速度为5米/秒 ,他们经过多少秒第一次相遇?(9分)
7/ 7
4. 甲、乙两人同时从两地骑车相向而行,甲每小时行驶20千米,乙每小时行驶18千米,两人相遇时距离全程中点3千米,全程长多少千米?(9分)
答案
一、1. 七 1000000 2. 100 钝角
3. 1 4. 6
5. 109 5050 百万 一百零九万五千零五十 110万
6. 19 5 【解析】两边之和>第三边>两边之差。
7. 6000 8. 792
9. A 【解析】A=9999×9999+9999=9999×(9999+1)=
9999×10000,B=1000×10000,所以A>B。
10. 51、45
11. 80 2400
二、1. B 2. C 3. C 4. B
三、1. (1)(6,2)
(2)(8,2) (6,2)
7/ 7
【解析】答案不唯一。
2.
【解析】画法不唯一。
3.
四、1. (31-19)÷(4-1)=4(米)
4+31=35(米)
答:这两块花布原来各有35米。
2. (16×3-16×2)÷2=8(分米)
答:和它相邻的另一条边长是8分米。
3. 440÷(6+5)=40(秒)
答:他们经过40秒第一次相遇。
4. 3×2÷(20-18)=3(小时)
7/ 7
(20+18)×3=114(千米)
答:全程长114千米。
【解析】两人相遇时距全程中点3千米,说明相遇时甲比乙多
行了3×2=6(千米),根据“相遇时总共多行的千米数÷每小时多
行的千米数=相遇时间”,可求出相遇时间,再根据“速度和×
相遇时间=路程”求全程即可。
7/ 7