北师大版数学必修2试题及答案
加入VIP免费下载

北师大版数学必修2试题及答案

ID:594949

大小:1.5 MB

页数:6页

时间:2021-03-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
高一数学必修二模块考试题 命题人:高一年级组 侯雪慧 参考公式: 球的表面积公式 S 球 24 R ,其中 R 是球半径. 锥体的体积公式V 锥体 1 3 Sh ,其中 S 是锥体的底面积, h 是锥体的高. 台体的体积V 台体 1 ( )3 h S SS S    ,其中 ,S S 分别是台体上、下底面的面积, h 是 台体的高. 球的体积公式V 球 34 3 R ,其中 R 是球半径. 一、选择题:本大题共 12 小题.每小题 5 分,共 60 分.在每小题给出的四个选项中,只有 一项是符合题目要求的. 1、 图(1)是由哪个平面图形旋转得到的 ( ) A B C D 2.若 a ,b 是异面直线,直线 c ∥ a ,则 c 与b 的位置关系是( ) A. 相交 B. 异面 C. 平行 D.异面或相交 3.在正方体 1 1 1 1ABCD ABC D 中,下列几种说法正确的是 ( ) A、 1 1AC AD B、 1 1DC AB C、 1AC 与 DC 成 45 角 D、 1 1AC 与 1B C 成 60 角 4.正三棱锥的底面边长为 6,高为 3 ,则这个三棱锥的全面积为( ) A. 39 B.18 3 C.9( 3 + 6 ) D. 6 5.如果两个球的体积之比为 8:27,那么两个球的表面积之比为 ( ) A.8:27 B. 2:3 C.4:9 D. 2:9 6、有一个几何体的三视图及其尺寸如下(单位 cm),则该几何体的表面积及体积为:( ) A.24πcm2,12πcm3 B.15πcm2,12πcm3 C.24πcm2,36πcm3 D.以上都不正确 7 一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是( ) 6 5 A、8Лcm2 B、12Лcm2 C、16Лcm2 D、20Лcm2 8、已知在四面体 ABCD 中,E、F 分别是 AC、BD 的中点,若 CD=2AB=4,EF  AB, 则 EF 与 CD 所成的角为( ) A、900 B、450 C、600 D、300 9、一个棱柱是正四棱柱的条件是 ( ) A、底面是正方形,有两个侧面是矩形 B、底面是正方形,有两个侧面垂直于底面 C、底面是菱形,且有一个顶点处的三条棱两两垂直 D、每个侧面都是全等矩形的四棱柱 10.下列四个命题 ① 垂直于同一条直线的两条直线相互平行; ② 垂直于同一个平面的两条直线相互平行; ③ 垂直于同一条直线的两个平面相互平行; ④ 垂直于同一个平面的两个平面相互垂直. 其中错误..的命题有 ( ) A. 1 个 B. 2 个 C. 3 个 D. 4 个 11.已知各面均为等边三角形的四面体的棱长为 2,则它的表面积是( ) A. 3 B. 2 3 C. 4 3 D. 8 3 12.在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去 8 个 三棱锥后,剩下的凸多面体的体积是 ( ) A、 2 3 B、 7 6 C、 4 5 D、 5 6 二、填空题(本大题共 4 小题,每小题 6 分,共 24 分) 1.长方体的共顶点的三个侧面面积分别为 3,5,15,则它的体积为_______________. 2.如图:四棱锥 V-ABCD 中,底面 ABCD 是边长为 2 的正方形,其他四个侧面 都是侧棱长为 5 的等腰三角形,则二面角 V-AB-C 的平面角为 度 3. 已知 PA 垂直平行四边形 ABCD 所在平面,若 PC BD ,平行则四边形 ABCD 一定是 . 4. 有下列命题:(m,n 是两条直线, 是平面) ○1 若 m║ ,n║ ,则 m║n ○2 若 m║n ,n║ ,则 m║ ○3 若 m║ 则 m 平行于 内所有直线 ○4 若 m 平行于 内无数直线,则 m║ 以上正确的有 个 三、解答题(共 66 分) 1、将圆心角为 1200,面积为 3 的扇形,作为圆锥的侧面,求圆锥的表面积和体积. 2.如图,在四边形 ABCD 中, , , , , AD=2,求四边形 ABCD 绕 AD 旋转一周所成几何体的表面积及体积. 3.作图(不要求写出作法,请保留作图痕迹) (1) 画出下图几何体的三视图(尺寸自定);(7 分) (2) 画出一个底面直径为4cm,高为2cm的圆锥的直观图(6 分) 4、空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点, 且AC=BD,判断四边形EFGH的形状,并加以证明。(10分) 5、已知正方体 1 1 1 1ABCD ABC D ,O 是底 ABCD 对角线的交点. 求证:(1) C1O∥面 1 1AB D ; (2 ) 1AC  面 1 1AB D . (14 分) 6、已知△BCD 中,∠BCD=90°,BC=CD=1,AB⊥平面 BCD, ∠ADB=60°,E、F 分别是 AC、AD 上的动点,且 (0 1).AE AF AC AD      (Ⅰ)求证:不论λ为何值,总有平面 BEF⊥平面 ABC; (Ⅱ)当λ为何值时,平面 BEF⊥平面 ACD? (14 分) 数学必修二模块考试题参考答案 D1 O D BA C1 B1A1 C F E DB A C 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分) 1.A 2.D 3.D 4.C 5.C 6. A 7.B 8. D 9 . D 10. B 11.C 12.D 二填空题。(本大题共 4 小题,每小题 6 分,共 24 分) 1. 15 2.600 3.菱形 4. 0 解答题. (共 66 分) 三、 1 解:l=3,R=1;S=4 ;V= 3 22  . 2.S=60 +4 2 ;V=52 - 3 8 = 3 148 3(1):如图: 3(2):略; 4:解:四边形 ABCD 是菱形;证明: EHABDEH  的中位线,是 ∥BD 且= 2 1 BD,同 理 FG∥BD 且 FG = 2 1 BD四边形 EFGH 是平行四边形,  EFEHBDAC又 四边形 ABCD 是菱形。 5 证 明 : (1)连结 1 1AC ,设 1 1 1 1 1AC B D O 连 结 1AO , 1 1 1 1ABCD A B C D 是正方体 1 1A ACC 是 平行四边形 1 1AC AC  且 1 1AC AC 又 1,O O 分别是 1 1,AC AC 的中点, 1 1O C AO  且 1 1O C AO 1 1AOC O 是平行四边形  09172 0187   yx yx 1 1 1,C O AO AO  面 1 1AB D , 1C O  面 1 1AB D  1C O  面 1 1AB D (2) 1CC  面 1 1 1 1A B C D 1 1 !CC B D  又 1 1 1 1AC B D , 1 1 1 1B D AC C  面 1 1 1AC B D即 同理可证 1 1AC AB , 又 1 1 1 1D B AB B  1AC  面 1 1AB D 6:证明:(Ⅰ)∵AB⊥平面 BCD, ∴AB⊥CD, ∵CD⊥BC 且 AB∩BC=B, ∴CD⊥平面 ABC. 又 ),10(   AD AF AC AE ∴不论λ为何值,恒有 EF∥CD,∴EF⊥平面 ABC,EF  平面 BEF, ∴不论λ为何值恒有平面 BEF⊥平面 ABC. (Ⅱ)由(Ⅰ)知,BE⊥EF,又平面 BEF⊥平面 ACD, ∴BE⊥平面 ACD,∴BE⊥AC. ∵BC=CD=1,∠BCD=90°,∠ADB=60°, ∴ ,660tan2,2  ABBD ,722  BCABAC 由 AB2=AE·AC 得 ,7 6, 7 6  AC AEAE  故当 7 6 时,平面 BEF⊥平面 ACD.

资料: 4.5万

进入主页

人气:

10000+的老师在这里下载备课资料