2016~2017 学年度第一学期槐荫区九年级数学调研测试题( 2017.1)
本试题分试卷和答题卡两部分.第 1 卷共 2 页,满分为 36 分,第 II 卷共 4 页,满分为
84 分.本试题共 6 页,满分为 120 分.考试时间为 120 分钟.
第Ⅰ卷(选择题共 36 分)
一、选择题(本大题共 12 个小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只
有一项是符合题目要求的.)
1.点(一 1,一 2)所在的象限为
A.第一象限 B.第二象限 c.第三象限 D.第四象限
2.反比例函数 y=k
x
的图象生经过点(1,-2),则 k 的值为
A.-1 B.-2 C.1 D.2
3.若 y= kx-4 的函数值 y 随 x 的增大而减小,则 k 的值可能是下列的
A.-4 B.0 C.1 D.3
4.在平面直角坐标系中,函数 y= -x+1 的图象经过
A.第一,二,三象眼 B.第二,三,四象限
C.第一,二,四象限 D.第一,三,四象限
5.如图,AB 是⊙O 的直径,点 C 在⊙O 上,若∠B=50°,则∠A 的度数为
A.80° B.60° C.50° D.40°
6.如图,点 A(t,3)在第一象限,OA 与 x 轴所夹的锐角为α,tanα=
A.1 B.1.5 C.2
7.抛物线 y=-3x2-x+4 与坐标轴的交点的个数是
A.3 B.2 C.1 D.0
8.在同一平面直角坐标系中,函数 y=mx+m 与 y=-m
x (m≠0)的图象可能是
9.如图,点 A 是反比例函数 y=2
x(x>0)的图象上任意一点,AB//x 轴,交反比例函数 y=-
3
x
的 图象于点 B,以 AB 为边作ABCD,其中 C、D 在 x 轴上,则 SABCD 为
A. 2 B. 3 C. 4 D. 5
10.如图,在平面直角坐标系中,⊙O 的半径为 1,则直线 y=x 一 2与⊙O 的位置关系是
A.相离 B.相切 C.相交 D.以上三种情况都有可能
11.竖直向上发射的小球的高度 h(m)关于运动时间 t(s)的函数表达式为 h=at2+bt,其图象如
图 所示,若小球在发射后第 2 秒与第 6 秒时的高度相等,则下列时刻中小球的高度最高
的是 A.第 3 秒 B.第 3.9 秒 C.第 4.5 秒 D.第 6.5 秒
12.如图,将抛物线 y=(x—1)2 的图象位于直线 y=4 以上的部分向下翻折,得到新的图像,
若直线 y=-x+m 与新图象有四个交点,则 m 的取值范围为
A.4
3
<m<3 B.3
4
<m<7 C.4
3
<m<7 D.3
4
<m<3
第Ⅱ卷(非选择题共 84 分)
二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分.把答案填在答题卡的横线上.)
13.直线 y=kx+b 经过点(0,0)和(1,2),则它的解析式为_____________
14.如图,A、B、C 是⊙O 上的点,若∠AOB=70°,则∠ACB 的度数为__________
15.如图,己知点 A(O,1),B(O,-1),以点 A 为圆心,AB 为半径作圆,交 x 轴的正半
轴于点 C.则∠BAC 等于____________度.
16.如图,在平面直角坐标系中,抛物线 y=1
2x2 经过平移得到抛物线 y=1
2x2-2x,其对称轴与
两段抛物线弧所围成的阴影部分的面积为______________
17.如图,已知点 A、C 在反比例函数 y=a
x
(a>0)的图象上,点 B、D 在反比例函数 y=b
x
(b
<0)的图象上,AB∥CD∥x 轴,AB,CD 在 x 轴的两侧,AB=3,CD=2,AB 与 CD 的距
离为 5,则 a-b 的值是________________
18.如图所示,⊙O 的面积为 1,点 P 为⊙O 上一点,令记号【n,m】表示半径 OP 从如图所
示的位置开始以点 O 为中心连续旋转 n 次后,半径 OP 扫过的面积.旋转的规则为:第 1
次旋转 m 度;第 2 次从第 1 次停止的位置向相同的方向再次旋转m
2
度:第 3 次从第 2 次停
止的位置向相同的方向再次旋转m
4
度;第 4 次从第 3 次停止的位置向相同的方向再次旋转m
8
度……依此类推.例如【2,90】=3
8
,则【2017, 180】=_______________
三、解答题(本大题共 9 个小题,共 66 分.解答应写出文字说明,证明过程或演算步骤.)
19.(本小题满分 6 分)
(1)计算 sin245°+cos30°•tan60°
(2)在直角三角形 ABC 中,已知∠C=90°,∠A=60°,BC=3,求 AC.
20.(本小题满分 6 分)
如图,⊙O 的直径 CD=10,AB 是⊙O 的弦,AB⊥CD,垂足为 M, OM∶OC=3∶5.
求 AB 的长度.
21.(本小题满分 6 分)
如图,点(3,m)为直线 AB 上的点.求该点的坐标.
22.(本小题满分 7 分)
如图,在⊙O 中,AB,CD 是直径,BE 是切线,连结 AD,BC,BD.
(1)求证:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC 的度数.
23.(本小题满分 7 分)
某体育用品店购进一批单价为 40 元的球服,如果按单价 60 元销售,那么一个月内可售
出 240 套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高 5 元,销
售量相应减少 20 套.求当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是
多少?
24.(本小题满分 8 分)
如图所示,某数学活动小组要测量小河对岸大树 BC 的高度,他们在斜坡上 D 处测得大
树顶端 B 的仰角是 30°,朝大树方向下坡走 6 米到达坡底 A 处,在 A 处测得大树顶端 B 的仰
角是 48°,若坡角∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,
cos48°≈0.67, tan48°≈l.ll, 3≈1.73)
25.(本小题满分 8 分)
如图,矩形 OABC 的顶点 A、C 分别在 x 轴、y 轴的正半轴上,点 D 为对角线 OB 的中点,
点 E(4,n)在边 AB 上,反比例函数 y=k
x(k≠0)在第一象限内的图象经过点 D、E,且 tan∠BOA
=1
2
.
(1)求边 AB 的长;
(2)求反比例函数的解析式和 n 的值;
(3)若反比例函数的图象与矩形的边 BC 交于点 F,将矩形折叠,使点 D 与点 F 重合,折
痕分别与 x、y 轴正半轴交于 H、G,求线段 OG 的长
26.(本小题满分 9 分)
如图,抛物线 y= 3
3 (x2+3x 一 4)与 x 轴交于 A、B 两点,与 y 轴交于点 C.
(1)求点 A、点 C 的坐标,
(2)求点 D 到 AC 的距离。
(3)看点 P 为抛物线上一点,以 2 为半径作⊙P,当⊙P 与直线 AC 相切时,求点 P 的横坐
标.
27.(本小题满分 9 分)
(1)如图 l,Rt△ABD 和 Rt△ABC 的斜边为 AB,直角顶点 D、C 在 AB 的同侧,
求证:A、B、C、D 四个点在同一个圆上.
(2)如图 2,△ABC 为锐角三角形,AD⊥BC 于点 D,CF⊥AB 于点 F,AD 与 CF 交于点 G,
连结 BG 并延长交 AC 于点 E,作点 D 关于 AB 的对称点 P,连结 PF.
求证:点 P、F、E 三点在一条直线上.
(3)如图 3,△ABC 中,∠A=30°,AB=AC=2,点 D、E、F 分别为 BC、CA、AB 边上
任意一点,△DEF 的周长有最小值,请你直接写出这个最小值.
九年级数学试题参考答案与评分标准
一、选择题:
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 C B A C D C A A D B B D
二、填空题:
13. y=2x
14. 35
15. 60
16.4
17. 6
18. 2017
11 2
或
2017
2017
2 1
2
三、解答题:
19.(1) 解: 2sin 45 cos30 tan60
= 22 3( ) 32 2
·············································································· 1 分
= 1 3
2 2
···························································································· 2 分
=2 ··································································································3 分
(2)解:∵∠B=90°-∠A=90°-60°=30°··················································1 分
tanB= 3
AC AC
BC
················································································· 2 分
∴AC=3·tanB=3tan30°=3× 3
3 = 3 .····················································· 3 分
20. 解:连接 OB,·············································································· 1 分
∵⊙O 的直径 CD=10,
∴OC=5,·························································································2 分
又∵OM︰OC=3︰5,
∴OM=3,························································································ 3 分
∵AB⊥CD,且 CD 为⊙O 的直径,
∴△BOM 是直角三角形,且 AB=2BM;················································· 4 分
在 Rt△BOM 中,OB=5,OM=3,
∴BM= 2 2 2 25 3 4OB OM ,······················································ 5 分
∴AB=2BM=8··················································································· 6 分
21. 解:设直线 AB 的解析式为 y kx b
由图象可知,直线 AB 过点(-1,2)和(-2,0)···········································1 分
∴ 2
0 2
k b
k b
················································································· 2 分
(1)-(2)得 k=2,
把 k=2 代入(1)得 2=-2+b,∴b=4··························································3 分
∴ 2
4
k
b
∴直线 AB 的解析式为 y=2x+4·······························································4 分
当 x=3 时,y=2×3+4=10······································································· 5 分
∴该点坐标为(3,10)······································································ 6 分
22.(1)证明:∵AB、CD 为⊙O 直径
∴ ∠ADB=∠CBD=90°,·································································· 1 分
又∵∠A=∠C,AB=CD,
∴△ABD≌△CDB(AAS).···································································3 分
(2)∵BE 与⊙O 相切于 B,
∴AB⊥BE,······················································································ 4 分
又∵∠ADB 为直角,
∴∠A 和∠DBE 都是∠ABD 的余角,····················································· 5 分
∴∠A=∠DBE=37°,········································································· 6 分
∵OA=OD,
∴∠ADC=∠A=37°.········································································· 7 分
23.解:设销售单价为 x 元,一个月内获得的利润为w元,根据题意,得·········1 分
w=(x-40)(240- 60
5
x ×20)·································································4 分
=(x-40)(-4x+480)
=-4x2+640x-19200
=- 4(x-80)2+6400······································································· 5 分
所以抛物线顶点坐标为(80,6400)
抛物线的对称轴为直线 x=80,
∵a=-10<0,
∴当 x=80 时,w的最大值为 6400.······················································ 6 分
∴当销售单价为 80 元时,才能在一个月内获得最大利润,最大利润是 6400 元
········································································································7 分
24.解:如图,过点 D 作 DM⊥EC 于点 M,DN⊥BC 于点 N, 设 BC=h. ········2 分
在 Rt△DMA 中,∵AD=6,∠DAE=30°,
∴DM=3,AM= 3 3 ,······································································· 3 分
则 CN=3,BN=h-3;···········································································4 分
在 Rt△BDN 中,
∵∠BDN=30°,
∴DN= 3 = 3 3BN h ;··································································· 5 分
在 Rt△ABC 中,
∵∠BAC=48°,∴AC= tan tan 48
h h
BAC
.··············································· 6 分
∵AM+AC=DN,··················································································7 分
∴ 3 3 + tan 48
h
= 3 3h ,解之得 h≈13.
故大树的高度为 13 米.·········································································· 8 分
24 题图
25.解:(1)∵在 Rt△BOA 中,点 E(4,n)在直角边 AB 上,
∴OA=4,·························································································· 1 分
∴AB=OA×tan∠BOA=2.······································································· 2 分
(2)∵点 D 为 OB 的中点,点 B(4,2),
∴点 D(2,1),
又∵点 D 在 ky x
的图象上,
∴k=2,
∴ 2y x
,··························································································3 分
又∵点 E 在 2y x
图象上,
∴4n=2,
∴n= 1
2 .······························································································4 分
(3)设点 F(a,2),
∴2a=2,
∴CF=a=1 ,······················································································5 分
连结 FG,设 OG=t,
则 OG=FG=t ,CG=2-t,···································································· 6 分
在 Rt△CGF 中,GF2=CF2+CG2 ,························································· 7 分
∴t2=(2-t)2+12 ,
解得 t = 5
4
,
∴OG=t= 5
4
.······················································································8 分
26.解:⑴∵当 x=0 时,y=- 4 3
3
,
∴C(0,- 4 3
3 ),··············································································· 1 分
∵当 y=0 时, 23 ( 3 4) 03 x x ,
得 1 4x , 2 1x ,
∴A(-4,0), B(1,0)············································································ 2 分
⑵∵A(-4,0), C(0,- 4 3
3
),
A
B
O
y
x
CP3
P2
P1
E
D
∴AO=4, CO= 4 3
3
,
在 Rt△AOC 中,
∵tan∠OAC= CO
AO = 3
3
,
∴∠OAC=30°,···················································································3 分
作 OD⊥AC 于 D,
∴OD= AO sin∠OAC=2.······································································· 4 分
⑶∵A(-4,0), C(0,- 4 3
3 ),
∴可解得直线 AC 的解析式为 1
3 43y x ,········································ 5 分
当⊙P 与直线 AC 相切时,点 P 到直线 AC 的距离为 2,
若点 P 在直线 AC 的上方,
由(2)可知,点 P 在过点 O 且平行于直线 AC 的直线上,
此时,直线 OP 的表达式为: 2
3
3y x , ············································· 6 分
∴ 23 3( 3 4)3 3x x x ,
解得 1 2 2 2x 或 2 2 2 2x ,······················································· 7 分
若点 P 在直线 AC 的下方,
可得点 P 在直线 3
3 4 343 3y x 上,··············································8 分
∴ 23 3 4 3( 3 4) 43 3 3x x x ,
∴解得 3 4 2x x ,
∴点 P 的横坐标为 2 2 2 或 2 2 2 或-2.···········································9 分
27.解: (1) 取 AB 的中点 O,连结 OD,OC,·········································1 分
∵Rt△ABD 和 Rt△ABC 的斜边为 AB,
A
B C
E
F
P
G
D
1 2 3
4
∴OD= 1
2 AB ,OC= 1
2 AB ,··································································· 2 分
∴OA=OB=OC=OD,
∴A、B、C、D 四个点在同一个圆上.·······················································3 分
(2)如图,连结 DF,············································································· 4 分
∵点 D、P 关于 AB 对称,
∴∠1=∠2,·······················································································5 分
∵AD⊥BC 于点 D,CF⊥AB 于点 F,
∴∠2+∠3=90°,∠4+∠BCE=90°,BE⊥AC,点 A、C、D、F 四点共圆,
∴点 B、F、E、C 四点共圆,∠3=∠4,·················································· 6 分
∴∠2=∠BCE,∠BFE+∠BCE=180°,
∴∠2+∠BFE=180° ,········································································7 分
∴∠1+∠BFE=180°,
∴点 P、F、E 三点在一条直线上.··························································· 8 分
(3) 6 2
2
.······················································································· 9 分
不用注册,免费下载!