济南市槐荫区2017.1北师大版九年级数学期末考试题(含答案)
加入VIP免费下载

济南市槐荫区2017.1北师大版九年级数学期末考试题(含答案)

ID:595291

大小:575 KB

页数:12页

时间:2021-03-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2016~2017 学年度第一学期槐荫区九年级数学调研测试题( 2017.1) 本试题分试卷和答题卡两部分.第 1 卷共 2 页,满分为 36 分,第 II 卷共 4 页,满分为 84 分.本试题共 6 页,满分为 120 分.考试时间为 120 分钟. 第Ⅰ卷(选择题共 36 分) 一、选择题(本大题共 12 个小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只 有一项是符合题目要求的.) 1.点(一 1,一 2)所在的象限为 A.第一象限 B.第二象限 c.第三象限 D.第四象限 2.反比例函数 y=k x 的图象生经过点(1,-2),则 k 的值为 A.-1 B.-2 C.1 D.2 3.若 y= kx-4 的函数值 y 随 x 的增大而减小,则 k 的值可能是下列的 A.-4 B.0 C.1 D.3 4.在平面直角坐标系中,函数 y= -x+1 的图象经过 A.第一,二,三象眼 B.第二,三,四象限 C.第一,二,四象限 D.第一,三,四象限 5.如图,AB 是⊙O 的直径,点 C 在⊙O 上,若∠B=50°,则∠A 的度数为 A.80° B.60° C.50° D.40° 6.如图,点 A(t,3)在第一象限,OA 与 x 轴所夹的锐角为α,tanα= A.1 B.1.5 C.2 7.抛物线 y=-3x2-x+4 与坐标轴的交点的个数是 A.3 B.2 C.1 D.0 8.在同一平面直角坐标系中,函数 y=mx+m 与 y=-m x (m≠0)的图象可能是 9.如图,点 A 是反比例函数 y=2 x(x>0)的图象上任意一点,AB//x 轴,交反比例函数 y=- 3 x 的 图象于点 B,以 AB 为边作ABCD,其中 C、D 在 x 轴上,则 SABCD 为 A. 2 B. 3 C. 4 D. 5 10.如图,在平面直角坐标系中,⊙O 的半径为 1,则直线 y=x 一 2与⊙O 的位置关系是 A.相离 B.相切 C.相交 D.以上三种情况都有可能 11.竖直向上发射的小球的高度 h(m)关于运动时间 t(s)的函数表达式为 h=at2+bt,其图象如 图 所示,若小球在发射后第 2 秒与第 6 秒时的高度相等,则下列时刻中小球的高度最高 的是 A.第 3 秒 B.第 3.9 秒 C.第 4.5 秒 D.第 6.5 秒 12.如图,将抛物线 y=(x—1)2 的图象位于直线 y=4 以上的部分向下翻折,得到新的图像, 若直线 y=-x+m 与新图象有四个交点,则 m 的取值范围为 A.4 3 <m<3 B.3 4 <m<7 C.4 3 <m<7 D.3 4 <m<3 第Ⅱ卷(非选择题共 84 分) 二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分.把答案填在答题卡的横线上.) 13.直线 y=kx+b 经过点(0,0)和(1,2),则它的解析式为_____________ 14.如图,A、B、C 是⊙O 上的点,若∠AOB=70°,则∠ACB 的度数为__________ 15.如图,己知点 A(O,1),B(O,-1),以点 A 为圆心,AB 为半径作圆,交 x 轴的正半 轴于点 C.则∠BAC 等于____________度. 16.如图,在平面直角坐标系中,抛物线 y=1 2x2 经过平移得到抛物线 y=1 2x2-2x,其对称轴与 两段抛物线弧所围成的阴影部分的面积为______________ 17.如图,已知点 A、C 在反比例函数 y=a x (a>0)的图象上,点 B、D 在反比例函数 y=b x (b <0)的图象上,AB∥CD∥x 轴,AB,CD 在 x 轴的两侧,AB=3,CD=2,AB 与 CD 的距 离为 5,则 a-b 的值是________________ 18.如图所示,⊙O 的面积为 1,点 P 为⊙O 上一点,令记号【n,m】表示半径 OP 从如图所 示的位置开始以点 O 为中心连续旋转 n 次后,半径 OP 扫过的面积.旋转的规则为:第 1 次旋转 m 度;第 2 次从第 1 次停止的位置向相同的方向再次旋转m 2 度:第 3 次从第 2 次停 止的位置向相同的方向再次旋转m 4 度;第 4 次从第 3 次停止的位置向相同的方向再次旋转m 8 度……依此类推.例如【2,90】=3 8 ,则【2017, 180】=_______________ 三、解答题(本大题共 9 个小题,共 66 分.解答应写出文字说明,证明过程或演算步骤.) 19.(本小题满分 6 分) (1)计算 sin245°+cos30°•tan60° (2)在直角三角形 ABC 中,已知∠C=90°,∠A=60°,BC=3,求 AC. 20.(本小题满分 6 分) 如图,⊙O 的直径 CD=10,AB 是⊙O 的弦,AB⊥CD,垂足为 M, OM∶OC=3∶5. 求 AB 的长度. 21.(本小题满分 6 分) 如图,点(3,m)为直线 AB 上的点.求该点的坐标. 22.(本小题满分 7 分) 如图,在⊙O 中,AB,CD 是直径,BE 是切线,连结 AD,BC,BD. (1)求证:△ABD≌△CDB; (2)若∠DBE=37°,求∠ADC 的度数. 23.(本小题满分 7 分) 某体育用品店购进一批单价为 40 元的球服,如果按单价 60 元销售,那么一个月内可售 出 240 套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高 5 元,销 售量相应减少 20 套.求当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是 多少? 24.(本小题满分 8 分) 如图所示,某数学活动小组要测量小河对岸大树 BC 的高度,他们在斜坡上 D 处测得大 树顶端 B 的仰角是 30°,朝大树方向下坡走 6 米到达坡底 A 处,在 A 处测得大树顶端 B 的仰 角是 48°,若坡角∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74, cos48°≈0.67, tan48°≈l.ll, 3≈1.73) 25.(本小题满分 8 分) 如图,矩形 OABC 的顶点 A、C 分别在 x 轴、y 轴的正半轴上,点 D 为对角线 OB 的中点, 点 E(4,n)在边 AB 上,反比例函数 y=k x(k≠0)在第一象限内的图象经过点 D、E,且 tan∠BOA =1 2 . (1)求边 AB 的长; (2)求反比例函数的解析式和 n 的值; (3)若反比例函数的图象与矩形的边 BC 交于点 F,将矩形折叠,使点 D 与点 F 重合,折 痕分别与 x、y 轴正半轴交于 H、G,求线段 OG 的长 26.(本小题满分 9 分) 如图,抛物线 y= 3 3 (x2+3x 一 4)与 x 轴交于 A、B 两点,与 y 轴交于点 C. (1)求点 A、点 C 的坐标, (2)求点 D 到 AC 的距离。 (3)看点 P 为抛物线上一点,以 2 为半径作⊙P,当⊙P 与直线 AC 相切时,求点 P 的横坐 标. 27.(本小题满分 9 分) (1)如图 l,Rt△ABD 和 Rt△ABC 的斜边为 AB,直角顶点 D、C 在 AB 的同侧, 求证:A、B、C、D 四个点在同一个圆上. (2)如图 2,△ABC 为锐角三角形,AD⊥BC 于点 D,CF⊥AB 于点 F,AD 与 CF 交于点 G, 连结 BG 并延长交 AC 于点 E,作点 D 关于 AB 的对称点 P,连结 PF. 求证:点 P、F、E 三点在一条直线上. (3)如图 3,△ABC 中,∠A=30°,AB=AC=2,点 D、E、F 分别为 BC、CA、AB 边上 任意一点,△DEF 的周长有最小值,请你直接写出这个最小值. 九年级数学试题参考答案与评分标准 一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B A C D C A A D B B D 二、填空题: 13. y=2x 14. 35 15. 60 16.4 17. 6 18. 2017 11 2  或 2017 2017 2 1 2  三、解答题: 19.(1) 解: 2sin 45 cos30 tan60    = 22 3( ) 32 2   ·············································································· 1 分 = 1 3 2 2  ···························································································· 2 分 =2 ··································································································3 分 (2)解:∵∠B=90°-∠A=90°-60°=30°··················································1 分 tanB= 3 AC AC BC  ················································································· 2 分 ∴AC=3·tanB=3tan30°=3× 3 3 = 3 .····················································· 3 分 20. 解:连接 OB,·············································································· 1 分 ∵⊙O 的直径 CD=10, ∴OC=5,·························································································2 分 又∵OM︰OC=3︰5, ∴OM=3,························································································ 3 分 ∵AB⊥CD,且 CD 为⊙O 的直径, ∴△BOM 是直角三角形,且 AB=2BM;················································· 4 分 在 Rt△BOM 中,OB=5,OM=3, ∴BM= 2 2 2 25 3 4OB OM    ,······················································ 5 分 ∴AB=2BM=8··················································································· 6 分 21. 解:设直线 AB 的解析式为 y kx b  由图象可知,直线 AB 过点(-1,2)和(-2,0)···········································1 分 ∴ 2 0 2 k b k b        ················································································· 2 分 (1)-(2)得 k=2, 把 k=2 代入(1)得 2=-2+b,∴b=4··························································3 分 ∴ 2 4 k b    ∴直线 AB 的解析式为 y=2x+4·······························································4 分 当 x=3 时,y=2×3+4=10······································································· 5 分 ∴该点坐标为(3,10)······································································ 6 分 22.(1)证明:∵AB、CD 为⊙O 直径 ∴ ∠ADB=∠CBD=90°,·································································· 1 分 又∵∠A=∠C,AB=CD, ∴△ABD≌△CDB(AAS).···································································3 分 (2)∵BE 与⊙O 相切于 B, ∴AB⊥BE,······················································································ 4 分 又∵∠ADB 为直角, ∴∠A 和∠DBE 都是∠ABD 的余角,····················································· 5 分 ∴∠A=∠DBE=37°,········································································· 6 分 ∵OA=OD, ∴∠ADC=∠A=37°.········································································· 7 分 23.解:设销售单价为 x 元,一个月内获得的利润为w元,根据题意,得·········1 分 w=(x-40)(240- 60 5 x  ×20)·································································4 分 =(x-40)(-4x+480) =-4x2+640x-19200 =- 4(x-80)2+6400······································································· 5 分 所以抛物线顶点坐标为(80,6400) 抛物线的对称轴为直线 x=80, ∵a=-10<0, ∴当 x=80 时,w的最大值为 6400.······················································ 6 分 ∴当销售单价为 80 元时,才能在一个月内获得最大利润,最大利润是 6400 元 ········································································································7 分 24.解:如图,过点 D 作 DM⊥EC 于点 M,DN⊥BC 于点 N, 设 BC=h. ········2 分 在 Rt△DMA 中,∵AD=6,∠DAE=30°, ∴DM=3,AM= 3 3 ,······································································· 3 分 则 CN=3,BN=h-3;···········································································4 分 在 Rt△BDN 中, ∵∠BDN=30°, ∴DN=  3 = 3 3BN h  ;··································································· 5 分 在 Rt△ABC 中, ∵∠BAC=48°,∴AC= tan tan 48 h h BAC   .··············································· 6 分 ∵AM+AC=DN,··················································································7 分 ∴ 3 3 + tan 48 h  =  3 3h  ,解之得 h≈13. 故大树的高度为 13 米.·········································································· 8 分 24 题图 25.解:(1)∵在 Rt△BOA 中,点 E(4,n)在直角边 AB 上, ∴OA=4,·························································································· 1 分 ∴AB=OA×tan∠BOA=2.······································································· 2 分 (2)∵点 D 为 OB 的中点,点 B(4,2), ∴点 D(2,1), 又∵点 D 在 ky x  的图象上, ∴k=2, ∴ 2y x  ,··························································································3 分 又∵点 E 在 2y x  图象上, ∴4n=2, ∴n= 1 2 .······························································································4 分 (3)设点 F(a,2), ∴2a=2, ∴CF=a=1 ,······················································································5 分 连结 FG,设 OG=t, 则 OG=FG=t ,CG=2-t,···································································· 6 分 在 Rt△CGF 中,GF2=CF2+CG2 ,························································· 7 分 ∴t2=(2-t)2+12 , 解得 t = 5 4 , ∴OG=t= 5 4 .······················································································8 分 26.解:⑴∵当 x=0 时,y=- 4 3 3 , ∴C(0,- 4 3 3 ),··············································································· 1 分 ∵当 y=0 时, 23 ( 3 4) 03 x x   , 得 1 4x   , 2 1x  , ∴A(-4,0), B(1,0)············································································ 2 分 ⑵∵A(-4,0), C(0,- 4 3 3 ), A B O y x CP3 P2 P1 E D ∴AO=4, CO= 4 3 3 , 在 Rt△AOC 中, ∵tan∠OAC= CO AO = 3 3 , ∴∠OAC=30°,···················································································3 分 作 OD⊥AC 于 D, ∴OD= AO sin∠OAC=2.······································································· 4 分 ⑶∵A(-4,0), C(0,- 4 3 3 ), ∴可解得直线 AC 的解析式为  1 3 43y x   ,········································ 5 分 当⊙P 与直线 AC 相切时,点 P 到直线 AC 的距离为 2, 若点 P 在直线 AC 的上方, 由(2)可知,点 P 在过点 O 且平行于直线 AC 的直线上, 此时,直线 OP 的表达式为: 2 3 3y x  , ············································· 6 分 ∴ 23 3( 3 4)3 3x x x    , 解得 1 2 2 2x    或 2 2 2 2x    ,······················································· 7 分 若点 P 在直线 AC 的下方, 可得点 P 在直线  3 3 4 343 3y x    上,··············································8 分 ∴  23 3 4 3( 3 4) 43 3 3x x x      , ∴解得 3 4 2x x   , ∴点 P 的横坐标为 2 2 2  或 2 2 2  或-2.···········································9 分 27.解: (1) 取 AB 的中点 O,连结 OD,OC,·········································1 分 ∵Rt△ABD 和 Rt△ABC 的斜边为 AB, A B C E F P G D 1 2 3 4 ∴OD= 1 2 AB ,OC= 1 2 AB ,··································································· 2 分 ∴OA=OB=OC=OD, ∴A、B、C、D 四个点在同一个圆上.·······················································3 分 (2)如图,连结 DF,············································································· 4 分 ∵点 D、P 关于 AB 对称, ∴∠1=∠2,·······················································································5 分 ∵AD⊥BC 于点 D,CF⊥AB 于点 F, ∴∠2+∠3=90°,∠4+∠BCE=90°,BE⊥AC,点 A、C、D、F 四点共圆, ∴点 B、F、E、C 四点共圆,∠3=∠4,·················································· 6 分 ∴∠2=∠BCE,∠BFE+∠BCE=180°, ∴∠2+∠BFE=180° ,········································································7 分 ∴∠1+∠BFE=180°, ∴点 P、F、E 三点在一条直线上.··························································· 8 分 (3) 6 2 2  .······················································································· 9 分 不用注册,免费下载!

资料: 4.5万

进入主页

人气:

10000+的老师在这里下载备课资料