2015~2016 学年第一学期毕业班教学质量跟踪测试(一)
数学参考答案
一、选择题(每小题 2 分,共 16 分)
1.A 2.A 3.A 4.D 5.B 6.C 7.C 8.D
二、填空题(每小题 3 分,共 21 分)
9.
3
4 10.3 11. 720)1(500 2 x 12.
5
4 13.
4
1 14.
3
1
三、解答题(本大题共 11 小题,共 78 分)
15.原式= 142
122
12 (3 分)(算式中对一个三角函数值给 1 分)
=6. (5 分)
16.(每小题 4 分)
(1)∵△= 012)2(1422 , (3 分)
∴方程有两个不相等的实数根. (4 分)
(2)∵△= 063444)1( 2 , (3 分)
∴方程没有实数根. (4 分)
(△的形式对 2 分,结果对 1 分,没有形式只有结果不扣分)
17.(每小题 5 分)
(1)将原方程化为一般式,得 0132 xx ,(如果其它都错了,这步对了可以
∵ 1342 acb , 给 1 分)
∴
12
13)3(
x . (3 分)
∴
2
133
1
x ,
2
133
2
x . (5 分)
(2) 12)2( 2 y , (如果其它都错了,这步对了可以给 1 分)
322 y 或 322 y , (3 分)
∴ 3221 y , 3222 y . (5 分)
18.设小道的宽为 x 米,根据题意,得 (1 分)
648)20)(240( xx . (3 分)
324)20( 2 x .
1820 x 或 1820 x , (4 分)
∴ 21 x , 382 x (不合题意,舍去). (6 分)
答:小道的宽为 2 米.
19.∵ AB BC AC
AD DE AE
,
∴△ABC∽△ADE. (3 分)
∴∠BAC=∠DAE. (5 分)
∴∠BAC-∠DAC=∠DAE-∠DAC.
∴∠ BAD=∠CAE. (6 分)
20.在 Rt△ABC 中,∵∠CAB=90°-∠DAC=60°,
∴ CABAB
BC tan ,
∴ CABABBC tan = 60tan5001 = 35001 .(3 分)
∵ 60cosAC
AB ,
∴
60cos
ABAC =
2
1
5001 = 0003 . (6 分)
答:敌舰与 A、B 两炮台的距离分别为 3 000 米和 35001 米. (不写单位,不写答不扣分)
21.设 AB=x 米,由题意:
在 Rt△ADB 中,∠ADB=45°,∠ABD=90°,则 DB=AB=x.(2 分)
在 Rt△ACB 中,∠ACB=36.2°,∠ABD=90°,CB=x+10,
∴ tan∠ACB=tan36.2°=
CB
AB =0.73, (5 分)
由
10x
x =0.73,解得 x≈27, (7 分)
答:教学楼高约为 27 米. (不写单位,不写答不扣分)
22.(1)如图所示,A1(4,2),B1(2,-4) . (3 分)
(图 1 分,坐标各 1 分)
(2)如图所示,A2(0,2),B 2(-1,-1). (6 分)
(图 1 分,坐标各 1 分)
(3)△OA1B1 与△O2A2B2 是关于点 M(-4,2)
为位似中心的位似图形. (8 分)
(点 M 图上位置 1 分,坐标 1 分)
23.探究: CDABPCBP 成立.(其他都错,有这步给 1 分,没有这步不扣分)
∵∠APC=∠BAP+∠B,∠APC=∠APD+∠CPD, (2 分)
∴∠BAP+∠B=∠APD+∠CPD. (3 分)
∵∠B=∠APD,
∴∠BAP=∠CPD. (4 分)
∵∠B=∠C,
∴△ABP∽△PCD. (6 分)
B
A
B1
A1
O2
O x
y
A2
B2
M
∴
PC
AB
CD
BP , (7 分)
∴ CDABPCBP (8 分)
拓展:
3
5 (10 分)
24.(1)点 A的坐标为(0,3);点 B 的坐标为(4,0).(2 分)
(2)在 Rt△AOB 中,OA=3,OB=4,∴AB=5. (3 分)
∴AP=t,QB=2t,AQ=5-2t.
△APQ 与△AOB 相似,可能有两种情况:
若△APQ∽△AOB,
则有
AB
AQ
AO
AP ,即
5
25
3
tt , (4 分)
解得
11
15t . (5 分)
若△APQ∽△ABO,
则有
AO
AQ
AB
AP , 即
3
25
5
tt , (6 分)
解得
13
25t .(7 分)
(3)∵
5
)25(4
2
1 ttS , (9 分)
∴ ttS 25
4 2 . (10 分)
(4) t =
5
3
或t =
3 2 21
3
. (12 分)
不用注册,免费下载!