2012年资阳市中考数学试卷解析
加入VIP免费下载

2012年资阳市中考数学试卷解析

ID:603363

大小:560 KB

页数:21页

时间:2021-03-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2012 年四川省资阳市中考数学试卷解析 一、选择题:本大题共 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中, 只有一个选项符合题意. 1.(2012•资阳)﹣2 的相反数是( ) A.2 B.﹣2 C. D. 考点: 相反数。 专题: 探究型。 分析: 根据相反数的定义进行解答即可. 解答: 解:由相反数的定义可知,﹣2 的相反数是﹣(﹣2)=2. 故选 A. 点评: 本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数. 2.(2012•资阳)下列事件为必然事件的是( ) A.小王参加本次数学考试,成绩是 150 分 B.某射击运动员射靶一次,正中靶心 C.打开电视机,CCTV 第一套节目正在播放新闻 D.口袋中装有 2 个红球和 1 个白球,从中摸出 2 个球,其中必有红球 考点: 随机事件。 专题: 计算题。 分析: 根据事件的分类的定义及分类对四个选项进行逐一分析即可. 解答: 解:A、小王参加本次数学考试,成绩是 150 分是随机事件,故本选项错误; B、某射击运动员射靶一次,正中靶心是随机事件,故本选项错误; C、打开电视机,CCTV 第一套节目正在播放新闻是随机事件,故本选项错误. D、口袋中装有 2 个红球和 1 个白球,从中摸出 2 个球,其中必有红球是必然事件, 故本选项正确; 故选 D. 点评: 本题考查的是随机事件,即在一定条件下,可能发生也可能不发生的事件,称为随 机事件. 3.(2012•资阳)如图是一个正方体被截去一角后得到的几何体,它的俯视图是( ) A. B. C. D. 考点: 简单组合体的三视图;截一个几何体。 分析: 根据俯视图是从上面看到的图形判定则可. 解答: 解:从上面看,是正方形右边有一条斜线, 故选:A. 点评: 本题考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关 键. 4.(2012•资阳)下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形; ⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中心对称图形的有 ( ) A.1 种 B.2 种 C.3 种 D.4 种 考点: 中心对称图形;轴对称图形。 分析: 根据中心对称图形的定义旋转 180°后能够与原图形完全重合即是中心对称图形,以 及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重 合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案. 解答: 解:①平行四边形是中心对称图形,不是轴对称图形; ②菱形是中心对称图形,也是轴对称图形; ③圆是中心对称图形,也是轴对称图形; ④梯形不是中心对称图形,是轴对称图形; ⑤等腰三角形不是中心对称图形,是轴对称图形; ⑥直角三角形不是中心对称图形,也不是轴对称图形; ⑦国旗上的五角星不是中心对称图形,是轴对称图形, 故是轴对称图形又是中心对称图形的有②③, 故选:B. 点评: 此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称 轴. 5.(2012•资阳)下列计算或化简正确的是( ) A.a2+a3=a5 B. C. D. 考点: 二次根式的加减法;算术平方根;合并同类项;分式的基本性质。 专题: 计算题。 分析: A、根据合并同类项的法则计算; B、化简成最简二次根式即可; C、计算的是算术平方根,不是平方根; D、利用分式的性质计算. 解答: 解:A、a2+a3=a2+a3,此选项错误; B、 +3 = + ,此选项错误; C、 =3,此选项错误; D、 = ,此选项正确. 故选 D. 点评: 本题考查了合并同类项、二次根式的加减法、算术平方根、分式的性质,解题的关 键是灵活掌握有关运算法则,并注意区分算术平方根、平方根. 6.(2012•资阳)小华所在的九年级一班共有 50 名学生,一次体检测量了全班学生的身高, 由此求得该班学生的平均身高是 1.65 米,而小华的身高是 1.66 米,下列说法错误的是( ) A.1.65 米是该班学生身高的平均水平 B.班上比小华高的学生人数不会超过 25 人 C.这组身高数据的中位数不一定是 1.65 米 D.这组身高数据的众数不一定是 1.65 米 考点: 算术平均数;中位数;众数。 分析: 根据平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中 趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据 的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数 是偶数,则中间两个数据的平均数就是这组数据的中位数,中位数代表了这组数据 值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息,对每一项进 行分析即可. 解答: 解:A、1.65 米是该班学生身高的平均水平,正确; B、因为小华的身高是 1.66 米,不是中位数, 所以班上比小华高的学生人数不会超过 25 人错误; C、这组身高数据的中位数不一定是 1.65 米,正确; D、这组身高数据的众数不一定是 1.65 米,正确. 故选 B. 点评: 此题考查了算术平均数、中位数、众数,解答此题不是直接求平均数、中位数、众 数,而是利用平均数、中位数、众数的概念进行综合分析,平均数受极值的影响较 大,而中位数不易受极端值影响. 7.(2012•资阳)如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气 重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入, 气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是 ( ) A. B. C. D. 考点: 函数的图象。 分析: 根据水从左导管匀速地注入,气体从右导管排出时,容器内剩余气体的体积随着注 水时间的增加而匀速减少,即可得出函数关系的大致图象. 解答: 解:∵水从左导管匀速地注入,气体从右导管排出时, 容器内剩余气体的体积随着注水时间的增加而匀速减少, ∴容器内剩余气体的体积与注水时间的函数关系的大致图象是 C. 故选 C. 点评: 本题主要考查了函数的图象问题,在解题时要结合题意找出正确的函数图象是本题 的关键. 8.(2012•资阳)如图,△ABC 是等腰三角形,点 D 是底边 BC 上异于 BC 中点的一个点, ∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题? ( ) A.一组对边平行,另一组对边相等的四边形是平行四边形 B.有一组对边平行的四边形是梯形 C.一组对边相等,一组对角相等的四边形是平行四边形 D.对角线相等的四边形是矩形 考点: 平行四边形的判定;全等三角形的判定与性质;等腰三角形的性质;矩形的判定; 梯形;命题与定理。 分析: 已知条件应分析一组边相等,一组角对应相等的四边不是平行四边形,根据全等三 角形判定方法得出∠B=∠E,AB=DE,进而得出一组对边相等,一组对角相等的四 边形不是平行四边形,得出答案即可. 解答: 解:A.一组对边平行,另一组对边相等的四边形是平行四边形,根据等腰梯形符合 要求,得出故此选项错误; B.有一组对边平行的四边形是梯形,若另一组对边也平行,则此四边形是平行四边 形,故此选项错误; C.一组对边相等,一组对角相等的四边形是平行四边形, ∵△ABC 是等腰三角形, ∴AB=AC,∠B=∠C, ∵DE=AC,AD=AD,∠ADE=∠DAC, 即 , ∴△ADE≌△DAC, ∴∠E=∠C, ∴∠B=∠E,AB=DE, 但是四边形 ABDE 不是平行四边形, 故一组对边相等,一组对角相等的四边形不是平行四边形,因此 C 符合题意, 故此选项正确; D.对角线相等的四边形是矩形,根据等腰梯形符合要求,得出故此选项错误; 故选:C. 点评: 此题主要考查了平行四边形的判定方法以及全等三角形的判定,结合已知选项,得 出已知条件应分析一组边相等,一组角对应相等的四边不是平行四边形是解题关键. 9.(2012•资阳)如图是二次函数 y=ax2+bx+c 的部分图象,由图象可知不等式 ax2+bx+c<0 的解集是( ) A.﹣1<x<5 B.x>5 C.x<﹣1 且 x>5 D.x<﹣1 或 x>5 考点: 二次函数与不等式(组)。 分析: 利用二次函数的对称性,可得出图象与 x 轴的另一个交点坐标,结合图象可得出 ax2+bx+c<0 的解集. 解答: 解:由图象得:对称轴是 x=2,其中一个点的坐标为(5,0), ∴图象与 x 轴的另一个交点坐标为(﹣1,0). 利用图象可知: ax2+bx+c<0 的解集即是 y<0 的解集, ∴x<﹣1 或 x>5. 故选:D. 点评: 此题主要考查了二次函数利用图象解一元二次方程根的情况,很好地利用数形结合, 题目非常典型. 10.(2012•资阳)如图,在△ABC 中,∠C=90°,将△ABC 沿直线 MN 翻折后,顶点 C 恰 好落在 AB 边上的点 D 处,已知 MN∥AB,MC=6,NC= ,则四边形 MABN 的面积是 ( ) A. B. C. D. 考点: 翻折变换(折叠问题)。 分析: 首先连接 CD,交 MN 于 E,由将△ABC 沿直线 MN 翻折后,顶点 C 恰好落在 AB 边上的点 D 处,即可得 MN⊥CD,且 CE=DE,又由 MN∥AB,易得△CMN∽△CAB, 根据相似三角形的面积比等于相似比的平方,相似三角形对应高的比等于相似比, 即可得 ,又由 MC=6,NC= ,即可求得四边形 MABN 的 面积. 解答: 解:连接 CD,交 MN 于 E, ∵将△ABC 沿直线 MN 翻折后,顶点 C 恰好落在 AB 边上的点 D 处, ∴MN⊥CD,且 CE=DE, ∴CD=2CE, ∵MN∥AB, ∴CD⊥AB, ∴△CMN∽△CAB, ∴ , ∵在△CMN 中,∠C=90°,MC=6,NC= , ∴S△CMN= CM•CN= ×6×2 =6 , ∴S△CAB=4S△CMN=4×6 =24 , ∴S 四边形 MABN=S△CAB﹣S△CMN=24 ﹣6 =18 . 故选 C. 点评: 此题考查了折叠的性质、相似三角形的判定与性质以及直角三角形的性质.此题难 度适中,解此题的关键是注意折叠中的对应关系,注意数形结合思想的应用. 二、填空题(共 6 小题,每小题 3 分,满分 18 分) 11.(2012•资阳)为了保护人类居住环境,我国的火电企业积极做好节能环保工作.2011 年,我国火电企业的平均煤耗继续降低,仅为 330000 毫克/千瓦时,用科学记数法表示并保留三个有效数字为 3.30×105 毫克/千瓦时. 考点: 科学记数法与有效数字。 分析: 科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时, 要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当 原数绝对值大于 10 时,n 是正数;当原数的绝对值小于 1 时,n 是负数. 解答: 解:根据题意 330 000 用科学记数法表示为 3.30×105 人. 故答案为:3.30×105. 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a| <10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值. 12.(2012•资阳)直角三角形的两边长分别为 16 和 12,则此三角形的外接圆半径是 10 或 8 . 考点: 三角形的外接圆与外心;勾股定理。 专题: 探究型。 分析: 直角三角形的外接圆圆心是斜边的中点,那么半径为斜边的一半,分两种情况:①16 为斜边长;②16 和 12 为两条直角边长,由勾股定理易求得此直角三角形的斜边长, 进而可求得外接圆的半径. 解答: 解:由勾股定理可知: ①当直角三角形的斜边长为 16 时,这个三角形的外接圆半径为 8; ②当两条直角边长分别为 16 和 12,则直角三角形的斜边长= =20, 因此这个三角形的外接圆半径为 10. 综上所述:这个三角形的外接圆半径等于 8 或 10. 故答案为:10 或 8. 点评: 本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜 边中点为圆心,斜边长的一半为半径的圆. 13.关于 x 的一元二次方程 kx2﹣x+1=0 有两个不相等的实数根,则 k 的取值范围是 k< 且 k≠0 . 考点: 根的判别式。 专题: 方程思想。 分析: 根据一元二次方程 kx2﹣x+1=0 有两个不相等的实数根,知△=b2﹣4ac>0,然后据此 列出关于 k 的方程,解方程即可. 解答: 解:∵kx2﹣x+1=0 有两个不相等的实数根, ∴△=1﹣4k>0,且 k≠0, 解得,k< 且 k≠0; 故答案是:k< 且 k≠0. 点评: 本题主要考查了一元二次方程的根的判别式.解题时,注意一元二次方程的“二次项 系数不为 0”这一条件. 14.(2012•资阳)某果园有苹果树 100 棵,为了估计该果园的苹果总产量,小王先按长势把 苹果树分成了 A、B、C 三个级别,其中 A 级 30 棵,B 级 60 棵,C 级 10 棵,然后从 A、B、 C 三个级别的苹果树中分别随机抽取了 3 棵、6 棵、1 棵,测出其产量,制成了如下的统计 表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是 7600 千克. 苹果树长势 A 级 B 级 C 级 随机抽取棵数(棵) 3 6 1 所抽取果树的平均产量(千克) 80 75 70 考点: 用样本估计总体;加权平均数。 分析: 利用样本估计总体的方法结合图表可以看出:A 级每颗苹果树平均产量是 80 千克, B 级每颗苹果树平均产量是 75 千克,C 级每颗苹果树平均产量是 70 千克,用 A 级 每颗苹果树平均产量是 80 千克×30 棵+B 级每颗苹果树平均产量是 75 千克×60 棵+C 级每颗苹果树平均产量是 70 千克×10 棵=该果园的苹果总产量. 解答: 解:由题意得:80×30+75×60+70×10=7600. 故答案为:7600. 点评: 此题主要考查了用样本估计总体,一般来说,用样本去估计总体时,样本越具有代 表性、容量越大,这时对总体的估计也就越精确. 15.(2012•资阳)如图,O 为矩形 ABCD 的中心,M 为 BC 边上一点,N 为 DC 边上一点, ON⊥OM,若 AB=6,AD=4,设 OM=x,ON=y,则 y 与 x 的函数关系式为 . 考点: 相似三角形的判定与性质;矩形的性质。 分析: 求两条线段的关系,把两条线段放到两个三角形中,利用两个三角形的关系求解. 解答: 解:如图,作 OF⊥BC 于 F,OE⊥CD 于 E, ∵ABCD 为矩形 ∴∠C=90° ∵OF⊥BC,OE⊥CD ∴∠EOF=90° ∴∠EON+∠FON=90° ∵ON⊥OM ∴∠EON=∠FOM ∴△OEN∽△OFM = ∵O 为中心 ∴ = = = ∴ = 即 y= x, 故答案为:y= x, 点评: 此题主要考查的是相似三角形的判定与性质,解题的关键是合理的在图中作出辅助 线,熟练掌握相似三角形的判定定理和性质. 16.(2012•资阳)观察分析下列方程:① ,② ,③ ;请利用它们 所蕴含的规律,求关于 x 的方程 (n 为正整数)的根,你的答案是: x=n+3 或 x=n+4 . 考点: 分式方程的解。 专题: 规律型。 分析: 首先求得分式方程①②③的解,即可得规律:方程 x+ =a+b 的根为:x=a 或 x=b, 然后将 x+ =2n+4 化为(x﹣3)+ =n+(n+1),利用规律求解即可求得 答案. 解答: 解:∵由①得,方程的根为:x=1 或 x=2, 由②得,方程的根为:x=2 或 x=3, 由②得,方程的根为:x=3 或 x=4, ∴方程 x+ =a+b 的根为:x=a 或 x=b, ∴x+ =2n+4 可化为(x﹣3)+ =n+(n+1), ∴此方程的根为:x﹣3=n 或 x﹣3=n+1, 即 x=n+3 或 x=n+4. 故答案为:x=n+3 或 x=n+4. 点评: 此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程 x+ =a+b 的根为:x=a 或 x=b 是解此题的关键. 三、解答题:本大题共 9 个小题,共 72 分.解答应写出必要的文字说明,证明过程或演算 步骤. 17.(2012•资阳)先化简,再求值: ,其中 a 是方程 x2﹣x=6 的根. 考点: 分式的化简求值;一元二次方程的解。 分析: 先根据分式混合运算的顺序把原式进行化简,再根据 a 是方程 x2﹣x=6 的根求出 a 的值,代入原式进行计算即可. 解答: 解:原式= = = = . ∵a 是方程 x2﹣x=6 的根, ∴a2﹣a=6, ∴原式= . 点评: 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 18.(2012•资阳)为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的一个 游戏: 口袋中有编号分别为 1、2、3 的红球三个和编号为 4 的白球一个,四个球除了颜色或编号不 同外,没有任何别的区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.先甲摸两次,每次 摸出一个球;把甲摸出的两个球放回口袋后,乙再摸,乙只摸一个球.如果甲摸出的两个球 都是红色,甲得 1 分,否则,甲得 0 分;如果乙摸出的球是白色,乙得 1 分,否则,乙得 0 分;得分高的获得入场券,如果得分相同,游戏重来. (1)运用列表或画树状图求甲得 1 分的概率; (2)这个游戏是否公平?请说明理由. 考点: 游戏公平性;列表法与树状图法。 分析: (1)首先根据题意列出表格或画出树状图图,然后求得所有等可能的结果与甲得 1 分的情况,然后利用概率公式求解即可求得答案; (2)由(1)求得乙的得分,比较概率不相等,即可得这个游戏是不公平. 解答: 解:(1)列表得:…(3 分) 1 2 3 4 1 ﹣ 1 分 1 分 0 分 2 1 分 ﹣ 1 分 0 分 3 1 分 1 分 ﹣ 0 分 4 0 分 0 分 0 分 ﹣ ∴P(甲得 1 分)= …(4 分) (2)不公平.…(5 分) ∵P(乙得 1 分)= …(6 分) ∴P(甲得 1 分)≠P(乙得 1 分), ∴不公平.…(7 分) 点评: 本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率 相等就公平,否则就不公平. 19.(2012•资阳)已知:一次函数 y=3x﹣2 的图象与某反比例函数的图象的一个公共点的 横坐标为 1. (1)求该反比例函数的解析式; (2)将一次函数 y=3x﹣2 的图象向上平移 4 个单位,求平移后的图象与反比例函数图象的 交点坐标; (3)请直接写出一个同时满足如下条件的函数解析式: ①函数的图象能由一次函数 y=3x﹣2 的图象绕点(0,﹣2)旋转一定角度得到; ②函数的图象与反比例函数的图象没有公共点. 考点: 反比例函数与一次函数的交点问题;一次函数图象与几何变换。 分析: (1)先求出两函数的交点坐标,利用待定系数法即可求得反比例函数的解析式; (2)平移后的图象对应的解析式为 y=3x+2,联立两函数解析式,进而求得交点坐 标; (3)常数项为﹣2,一次项系数小于﹣1 的一次函数均可. 解答: 解:(1)把 x=1 代入 y=3x﹣2,得 y=1, 设反比例函数的解析式为 , 把 x=1,y=1 代入得,k=1, ∴该反比例函数的解析式为 ; (2)平移后的图象对应的解析式为 y=3x+2, 解方程组 ,得 或 . ∴平移后的图象与反比例函数图象的交点坐标为( ,3)和(﹣1,﹣1); (3)y=﹣2x﹣2. (结论开放,常数项为﹣2,一次项系数小于﹣1 的一次函数均可) 点评: 考查了反比例函数与一次函数的交点问题,一次函数图象与几何变换,解题的关键 是待定系数法求函数解析式,掌握各函数的图象和性质. 20.(2012•资阳)小强在教学楼的点 P 处观察对面的办公大楼.为了测量点 P 到对面办公 大楼上部 AD 的距离,小强测得办公大楼顶部点 A 的仰角为 45°,测得办公大楼底部点 B 的 俯角为 60°,已知办公大楼高 46 米,CD=10 米.求点 P 到 AD 的距离(用含根号的式子表 示). 考点: 解直角三角形的应用-仰角俯角问题。 分析: 连接 PA、PB,过点 P 作 PM⊥AD 于点 M;延长 BC,交 PM 于点 N,将实际问题中 的已知量转化为直角三角形中的有关量,设 PM=x 米,在 Rt△PMA 中,表示出 AM, 在 Rt△PNB 中,表示出 BN,由 AM+BN=46 米列出方程求解即可. 解答: 解:连接 PA、PB,过点 P 作 PM⊥AD 于点 M;延长 BC,交 PM 于点 N 则∠APM=45°,∠BPM=60°,NM=10 米 设 PM=x 米 在 Rt△PMA 中,AM=PM×tan∠APM=xtan45°=x(米) 在 Rt△PNB 中,BN=PN×tan∠BPM=(x﹣10)tan60°=(x﹣10) (米) 由 AM+BN=46 米,得 x+(x﹣10) =46 解得, , ∴点 P 到 AD 的距离为 米.(结果分母有理化为 米也可) 点评: 此题考查了解直角三角形的知识,作出辅助线,构造直角三角形是解题的关键. 21.(2012•资阳)已知 a、b 是正实数,那么, 是恒成立的. (1)由 恒成立,说明 恒成立; (2)填空:已知 a、b、c 是正实数,由 恒成立,猜测: 也 恒成立; (3)如图,已知 AB 是直径,点 P 是弧上异于点 A 和点 B 的一点,PC⊥AB,垂足为 C, AC=a,BC=b,由此图说明 恒成立. 考点: 相似三角形的判定与性质;完全平方公式;一元一次不等式的应用;圆周角定理。 分析: (1)由( ﹣ )2≥0,利用完全平方公式,即可证得 恒成立; (2)由 a3+b3+c3﹣3abc=(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac)= (a+b+c)[(a﹣b) 2+(b﹣c)2+(c﹣a)2],可证得 a3+b3+c3≥3abc,即可得 也恒成立; (3)首先证得 Rt△APC∽Rt△PBC,由相似三角形的对应边成比例,可求得 PC 的 值,又由 OP 是半径,可求得 OP= ,然后由点到线的距离垂线段最短,即可证得 恒成立. 解答: 解:(1)∵( ﹣ )2≥0, ∴a﹣2 +b≥0,…(1 分) ∴a+b≥2 ,…(2 分) ∴ ≥ ;…(3 分) (2) …(6 分) 理由:a3+b3+c3﹣3abc =(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac) = (a+b+c)(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac) = (a+b+c)[(a﹣b)2+(b﹣c)2+(c﹣a)2] ∵a、b、c 是正实数, ∴a3+b3+c3﹣3abc≥0, ∴a3+b3+c3≥3abc, 同理: 也恒成立; 故答案为: ; (3)如图,连接 OP, ∵AB 是直径, ∴∠APB=90°, 又∵PC⊥AB, ∴∠ACP=∠ACB=90°, ∴∠A+∠B=∠A+∠APC=90°, ∴∠APC=∠B, ∴Rt△APC∽Rt△PBC, ∴ , ∴PC2=AC•CB=ab, ∴PC= ,…(7 分) 又∵PO= , ∵PO≥PC, ∴ .…(8 分) 点评: 此题考查了相似三角形的判定与性质、圆周角定理、几何不等式的应用与证明以及 完全平方公式等知识.此题综合性较强,难度较大,注意数形结合思想的应用,注 意完全平方式的非负性的应用. 22.(2012•资阳)为了解决农民工子女就近入学问题,我市第一小学计划 2012 年秋季学期 扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课 桌凳与办公桌椅的数量比为 20:1,购买电脑的资金不低于 16000 元,但不超过 24000 元.已 知一套办公桌椅比一套课桌凳贵 80 元,用 2000 元恰好可以买到 10 套课桌凳和 4 套办公桌 椅.(课桌凳和办公桌椅均成套购进) (1)一套课桌凳和一套办公桌椅的价格分别为多少元? (2)求出课桌凳和办公桌椅的购买方案. 考点: 一元一次不等式组的应用;二元一次方程组的应用。 分析: (1)根据一套办公桌椅比一套课桌凳贵 80 元以及用 2000 元恰好可以买到 10 套课 桌凳和 4 套办公桌椅,得出等式方程求出即可; (2)利用购买电脑的资金不低于 16000 元,但不超过 24000 元,得出 16000≤80000 ﹣120×20m﹣200×m≤24000 求出即可. 解答: 解:(1)设一套课桌凳和一套办公桌椅的价格分别为 x 元、y 元,得: ,…(2 分) 解得 ∴一套课桌凳和一套办公桌椅的价格分别为 120 元、200 元…(3 分); (2)设购买办公桌椅 m 套,则购买课桌凳 20m 套,由题意得: 16000≤80000﹣120×20m﹣200×m≤24000…(5 分) 解得: …(6 分), ∵m 为整数, ∴m=22、23、24,有三种购买方案:…(7 分) 方案一 方案二 方案三 课桌凳(套) 440 460 480 办公桌椅(套) 22 23 24 点评: 此题主要考查了二元一次方程组的应用和不等式组的应用,根据已知得出不等式关 系是解题关键. 23.(2012•资阳)(1)如图(1),正方形 AEGH 的顶点 E、H 在正方形 ABCD 的边上,直 接写出 HD:GC:EB 的结果(不必写计算过程); (2)将图(1)中的正方形 AEGH 绕点 A 旋转一定角度,如图(2),求 HD:GC:EB; (3)把图(2)中的正方形都换成矩形,如图(3),且已知 DA:AB=HA:AE=m:n,此 时 HD:GC:EB 的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的 结果(不必写计算过程). 考点: 相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;等腰直角三角形; 正方形的性质。 分析: (1)首先连接 AG,由正方形 AEGH 的顶点 E、H 在正方形 ABCD 的边上,易证得 ∠GAE=∠CAB=45°,AE=AH,AB=AD,即 A,G,C 共线,继而可得 HD=BE, GC= BE,即可求得 HD:GC:EB 的值; (2)连接AG、AC,由△ADC和△AHG 都是等腰直角三角形,易证得△DAH∽△CAG 与△DAH≌△BAE,利用相似三角形的对应边成比例与正方形的性质,即可求得 HD: GC:EB 的值; (3)由矩形 AEGH 的顶点 E、H 在矩形 ABCD 的边上,由 DA:AB=HA:AE=m: n,易证得△ADC∽△AHG,△DAH∽△CAG,△ADH∽△ABE,利用相似三角形 的对应边成比例与勾股定理即可求得 HD:GC:EB 的值. 解答: 解:(1)连接 AG, ∵正方形 AEGH 的顶点 E、H 在正方形 ABCD 的边上, ∴∠GAE=∠CAB=45°,AE=AH,AB=AD, ∴A,G,C 共线,AB﹣AE=AD﹣AH, ∴HD=BE, ∵AG= = AE,AC= = AB, ∴GC=AC﹣AG= AB﹣ AE= (AB﹣AE)= BE, ∴HD:GC:EB=1: :1…(3 分) (2)连接 AG、AC, ∵△ADC 和△AHG 都是等腰直角三角形, ∴AD:AC=AH:AG=1: ,∠DAC=∠HAG=45°, ∴∠DAH=∠CAG,…(4 分) ∴△DAH∽△CAG, ∴HD:GC=AD:AC=1: ,…(5 分) ∵∠DAB=∠HAE=90°, ∴∠DAH=∠BAE, 在△DAH 和△BAE 中, , ∴△DAH≌△BAE(SAS), ∴HD=EB, ∴HD:GC:EB=1: :1;…(6 分) (3)有变化, 连接 AG、AC, ∵矩形 AEGH 的顶点 E、H 在矩形 ABCD 的边上,DA:AB=HA:AE=m:n, ∴∠ADC=∠AHG=90°, ∴△ADC∽△AHG, ∴AD:AC=AH:AG=m: ,∠DAC=∠HAG, ∴∠DAH=∠CAG,…(4 分) ∴△DAH∽△CAG, ∴HD:GC=AD:AC=m: ,…(5 分) ∵∠DAB=∠HAE=90°, ∴∠DAH=∠BAE, ∵DA:AB=HA:AE=m:n, ∴△ADH∽△ABE, ∴DH:BE=AD:AB=m:n, ∴HD:GC:EB=m: :n.…(8 分) 点评: 此题考查了相似三角形的判定与性质、正方形的性质、矩形的性质、全等三角形的 判定与性质以及勾股定理等知识.此题综合性较强,难度较大,注意掌握辅助线的 作法,注意数形结合思想的应用. 24.(2012•资阳)如图,在△ABC 中,AB=AC,∠A=30°,以 AB 为直径的⊙O 交 BC 于点 D,交 AC 于点 E,连接 DE,过点 B 作 BP 平行于 DE,交⊙O 于点 P,连接 EP、CP、OP. (1)BD=DC 吗?说明理由; (2)求∠BOP 的度数; (3)求证:CP 是⊙O 的切线; 如果你解答这个问题有困难,可以参考如下信息: 为了解答这个问题,小明和小强做了认真的探究,然后分别用不同的思路完成了这个题目.在 进行小组交流的时候,小明说:“设 OP 交 AC 于点 G,证△AOG∽△CPG”;小强说:“过点 C 作 CH⊥AB 于点 H,证四边形 CHOP 是矩形”. 考点: 切线的判定;等腰三角形的性质;圆周角定理。 专题: 探究型。 分析: (1)连接 AD,由圆周角定理可知∠ADB=90°,再由 AB=AC 可知△ABC 是等腰三 角形,故 BD=DC; (2)由于 AD 是等腰三角形 ABC 底边上的中线,所以∠BAD=∠CAD,故 = , 进而可得出 BD=DE,故 BD=DE=DC, 所以∠DEC=∠DCE,△ABC 中由等腰三角形的性质可得出∠ABC=75°,故 ∠DEC=75°由三角形内角和定理得出∠EDC 的度数,再根据 BP∥DE 可知 ∠PBC=∠EDC=30°,进而得出∠ABP 的度数,再由 OB=OP,可知∠OBP=∠OPB, 由三角形内角和定理即可得出∠BOP=90°; (3)设 OP 交 AC 于点 G,由∠BOP=90°可知∠AOG=90°在 Rt△AOG 中,由 ∠OAG=30°,可知 = ,由于 = = ,所以 = , = ,再根据 ∠AGO=∠CGP 可得出△AOG∽△CPG,由相似三角形形的性质可知 ∠GPC=∠AOG=90°,故可得出 CP 是⊙O 的切线. 解答: (1)解:BD=DC. 连接 AD,如图 1, ∵AB 是直径, ∴∠ADB=90°, ∵AB=AC, ∴BD=DC; (2)解:∵AD 是等腰三角形 ABC 底边上的中线, ∴∠BAD=∠CAD, ∴ = , ∴BD=DE, ∴BD=DE=DC, ∴∠DEC=∠DCE, ∵△ABC 中,AB=AC,∠A=30° ∴∠DCE=∠ABC= (180°﹣30°)=75°, ∴∠DEC=75° ∴∠EDC=180°﹣75°﹣75°=30° ∵BP∥DE, ∴∠PBC=∠EDC=30°, ∴∠ABP=∠ABC﹣∠PBC=75°﹣30°=45° ∵OB=OP, ∴∠OBP=∠OPB=45°, ∴∠BOP=90°; (3)证明:证法一:设 OP 交 AC 于点 G,则∠AOG=∠BOP=90° 在 Rt△AOG 中, ∵∠OAG=30°, ∴ = , 又∵ = = , ∴ = , ∴ = , 又∵∠AGO=∠CGP ∴△AOG∽△CPG, ∴∠GPC=∠AOG=90°, ∴CP 是⊙O 的切线) 证法二:过点 C 作 CH⊥AB 于点 H,如图 2,则∠BOP=∠BHC=90°, ∴PO∥CH 在 Rt△AHC 中, ∵∠HAC=30°, ∴CH= AC, 又∵PO= AB= AC, ∴PO=CH, ∵四边形 CHOP 是平行四边形 ∴四边形 CHOP 是矩形, ∴∠OPC=90°, ∴CP 是⊙O 的切线. 点评: 本题考查的是切线的判定定理、等腰三角形的性质、圆周角定理及相似三角形的判 定与性质,在判定圆的切线时构造直角三角形,再利用直角三角形的性质去证明过 圆心的直线与切线垂直. 25.(2012•资阳)抛物线 的顶点在直线 y=x+3 上,过点 F(﹣2,2)的直线交 该抛物线于点 M、N 两点(点 M 在点 N 的左边),MA⊥x 轴于点 A,NB⊥x 轴于点 B. (1)先通过配方求抛物线的顶点坐标(坐标可用含 m 的代数式表示),再求 m 的值; (2)设点 N 的横坐标为 a,试用含 a 的代数式表示点 N 的纵坐标,并说明 NF=NB; (3)若射线 NM 交 x 轴于点 P,且 PA•PB= ,求点 M 的坐标. 考点: 二次函数综合题。 专题: 压轴题。 分析: (1)利用配方法将二次函数整理成顶点式即可,再利用点在直线上的性质得出答案 即可; (2)首先利用点 N 在抛物线上,得出 N 点坐标,再利用勾股定理得出 NF2=NC2+FC2, 进而得出 NF2=NB2,即可得出答案; (3)求点 M 的坐标,需要先求出直线 PF 的解析式.首先由(2)的思路得出 MF=MA, 然后连接 AF、FB,通过证明△PFA∽△PBF,利用相关的比例线段将 PA•PB 的值转 化为 PF 的值,进而求出点 F 的坐标和直线 PF 的解析式,即可得解. 解答: 解:(1)y= x2+x+m= (x+2)2+(m﹣1) ∴顶点坐标为(﹣2,m﹣1) ∵顶点在直线 y=x+3 上, ∴﹣2+3=m﹣1, 得 m=2; (2)∵点 N 在抛物线上, ∴点 N 的纵坐标为: a2+a+2, 即点 N(a, a2+a+2) 过点 F 作 FC⊥NB 于点 C, 在 Rt△FCN 中,FC=a+2,NC=NB﹣CB= a2+a, ∴NF2=NC2+FC2=( a2+a)2+(a+2)2, =( a2+a)2+(a2+4a)+4, 而 NB2=( a2+a+2)2, =( a2+a)2+(a2+4a)+4 ∴NF2=NB2, NF=NB; (3)连接 AF、BF, 由 NF=NB,得∠NFB=∠NBF,由(2)的结论知,MF=MA, ∴∠MAF=∠MFA, ∵MA⊥x 轴,NB⊥x 轴, ∴MA∥NB,∴∠AMF+∠BNF=180° ∵△MAF 和△NFB 的内角总和为 360°, ∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°, ∵∠MAB+∠NBA=180°, ∴∠FBA+∠FAB=90°, 又∵∠FAB+∠MAF=90°, ∴∠FBA=∠MAF=∠MFA, 又∵∠FPA=∠BPF, ∴△PFA∽△PBF, ∴ = ,PF2=PA×PB= , 过点 F 作 FG⊥x 轴于点 G,在 Rt△PFG 中, PG= = , ∴PO=PG+GO= , ∴P(﹣ ,0) 设直线 PF:y=kx+b,把点 F(﹣2,2)、点 P(﹣ ,0)代入 y=kx+b, 解得 k= ,b= , ∴直线 PF:y= x+ , 解方程 x2+x+2= x+ , 得 x=﹣3 或 x=2(不合题意,舍去), 当 x=﹣3 时,y= , ∴M(﹣3, ). 点评: 考查了二次函数综合题,在该二次函数综合题中,融入了勾股定理、相似三角形等 重点知识,(3)题通过构建相似三角形将 PA•PB 转化为 PF 的值是解题的关键,也 是该题的难点.

资料: 4.5万

进入主页

人气:

10000+的老师在这里下载备课资料