(第 6题图)
2013年龙岩市初中毕业、升学考试
数 学 试 题
(满分:150 分 考试时间:120 分钟)
注意:
请把所有答案填涂或书写到答题卡上!请不要错位、越界答题!
在本试题上答题无效.
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分.每小题的四个选项中,只有一项
是符合题目要求)
1.计算: 5 ( 2)+ - =
A.3 B. 3 C.7 D. 7
2.右图是由四个相同的小正方体组合而成的立体图形,它的俯视图是
A B C D
3.下列计算正确的是
A. 2a a a+ = B. 2 3 6a a a× = C. 3 2 6( )a a- =- D. 7 5 2a a a¸ =
4.下列图形,既是中心对称图形,又是轴对称图形的是
A.等边三角形 B.平行四边形 C.正五边形 D.正六边形
5.在九年级某次体育测试中,某班参加仰卧起坐测试的一组女生(每组 8人)成绩如下(单位:
次/分):45、44、45、42、45、46、48、45,则这组数据的平均数、众数分别为
A.44、45 B.45、45 C.44、46 D.45、46
6.如图,A、B、P是半径为 2的⊙O上的三点,∠APB=45°,
则弦 AB的长为
A. 2 B.2 C. 2 2 D.4
7.若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465.则
由 1,2,3这三个数字构成的,数字不重复的三位数是“凸数”的概率是
A. 1
3 B. 1
2
C. 2
3 D. 5
6
8.若二次函数 2y ax bx c= + + ( 0a¹ )的图象如图所示,则下列选项正确的是
A. 0a> B. 0c> C. 0ac> D. 0bc<
考室座位号
正面
(第 2题图)
(第 10题图)(第 8 题图) (第 9题图)
(第 20题图)
9.如图,边长分别为 4和 8的两个正方形 ABCD和 CEFG并排放在一起,连结 BD并延长
交 EG于点 T,交 FG于点 P,则 GT=
A. 2 B. 2 2 C.2 D.1
10.如图,在平面直角坐标系 xoy中,A(0,2),B(0,6),动点 C在直线 y=x上.若以 A、
B、C三点为顶点的三角形是等腰三角形,则点 C的个数是
A.2 B.3 C.4 D.5
二、填空题(本大题共 7 小题,每小题 3 分,共 21 分)
11.分解因式 2 2a a =______________.
12.已知 x=3是方程 2 6 0x x k- + = 的一个根,则 k =______.
13.已知 | 2 | 3 0a b- + - = ,则 ba =____________.
14.如图,PA是⊙O的切线,A为切点,B是⊙O上一点,
BC⊥AP于点 C,且 OB=BP=6,则 BC=_____________.
15.如图,AB∥CD,BC与 AD相交于点 M,N是射线 CD上的一点.
若∠B=65°,∠MDN=135°,则∠AMB=_________.
16.下列说法:
①对顶角相等;
②打开电视机,“正在播放《新闻联播》”是必然事件;
③若某次摸奖活动中奖的概率是
1
5
,则摸 5次一定会中奖;
④想了解端午节期间某市场粽子的质量情况,适合的调查方式是抽样调查;
⑤若甲组数据的方差 s2=0.01,乙组数据的方差 s2=0.05,则乙组数据比甲组数据更稳
定.
其中正确的说法是________________.(写出所有正确说法的序号)
17.对于任意非零实数 a、b,定义运算“Å ”,使下列式子成立:
31 2
2
Å =- ,
32 1
2
Å = ,
21( 2) 5
10
- Å = ,
215 ( 2)
10
Å - =- ,…,则 a bÅ = ___________.
三、解答题(本大题共 8 小题,共 89 分)
18.(本题满分 10分)
(1)计算: 0 20133 8 ( 3) ( 1) | 2 3 | ;
(2)解方程:
4 1
2 1 2 1
x
x x
= +
+ +
.
19.(本题满分 8分)先化简,再求值: 2
3 1
2 3 4 9 2 3
x
x x x- - +
,其中 2x= .
20.(本题满分 10分)如图,四边形 ABCD是平行四边形,
(第 14题图)
(第 15题图)
(背面还有试题)
E、F是对角线 AC上的两点,∠1=∠2.
(1)求证:AE=CF;
(2)求证:四边形 EBFD是平行四边形.
21.(本题满分 10分)某市在 2013年义务教育质量监测过程中,为了解学生的家庭教育情况,
就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作
的不完整的频数分布表和扇形统计图.
频数分布表
请根据上述信息,回答下列问题:
(1) a _______________, b _______________;
(2)在扇形统计图中,和外公外婆一起生活的学生所对应扇形圆心角的度数是________;
(3)若该市八年级学生共有 3万人,估计不与父母一起生活的学生有_______________
人.
22.(本题满分 12分)如图①,在矩形纸片 ABCD中, 3 1 3AB AD,= + = .
(1)如图②,将矩形纸片向上方翻折,使点 D恰好落在 AB边上的D¢处,压平折痕交
CD于点 E,则折痕 AE的长为_______________;
(2)如图③,再将四边形 BCED¢沿 D E¢ 向左翻折,压平后得四边形 B C ED , B C 交
AE于点 F,则四边形 B FED 的面积为_______________;
(3)如图④,将图②中的 AED¢D 绕点 E顺时针旋转a 角,得 A EDD ,使得 EA¢恰好
经过顶点 B,求弧D D 的长.(结果保留 )
代码 和谁一起生活 频数 频率
A 父母 4200 0.7
B 爷爷奶奶 660 a
C 外公外婆 600 0.1
D 其它 b 0.09
合计 6000 1
(第 21题图)
图① 图② 图③ 图④
(第 22题图)
23.(本题满分 12 分)某公司欲租赁甲、乙两种设备,用来生产 A 产品 80 件、B 产品 100
件.已知甲种设备每天租赁费为 400元,每天满负荷可生产 A产品 12件和 B产品 10
件;乙种设备每天租赁费为 300元,每天满负荷可生产 A产品 7件和 B产品 10件.
(1)若在租赁期间甲、乙两种设备每天均满负荷生产,则需租赁甲、乙两种设备各多
少天恰好完成生产任务?
(2)若甲种设备最多只能租赁 5天,乙种设备最多只能租赁7天,该公司为确保完成
生产任务,决定租赁这两种设备合计 10天(两种设备的租赁天数均为整数),问该公
司共有哪几种租赁方案可供选择?所需租赁费最少是多少?
24.(本题满分 13分)如图,将边长为4的等边三角形 AOB放置于平面直角坐标系 xoy中,
F是 AB边上的动点(不与端点 A、B重合),过点 F的反比例函数 ( 0, 0)ky k x
x
= > > 与
OA边交于点 E,过点 F作 FC x^ 轴于点 C,连结 EF、OF.
(1)若 3OCFSD = ,求反比例函数的解析式;
(2)在(1)的条件下,试判断以点 E为圆心,EA长
为半径的圆与 y轴的位置关系,并说明理由;
(3)AB边上是否存在点 F,使得 EF AE^ ?
若存在,请求出 :BF FA的值;若不存在,请说明理由.
25.(本题满分 14分)如图,四边形 ABCD是菱形,对角线 AC与 BD交于点 O,且 80AC = ,
60BD= .动点M、N分别以每秒1个单位的速度从点 A、D同时出发,分别沿 A O D
和D A® 运动,当点 N到达点 A时,M、N同时停止运动.设运动时间为 t秒.
(1)求菱形 ABCD的周长;
(2)记 DMND 的面积为 S, 求 S关于 t的解析式,并求 S的最大值;
(3)当 t=30秒时,在线段 OD的垂直平分线上是否存在点 P,使得∠DPO=∠DON?
若存在,这样的点 P有几个?并求出点 P到线段 OD的距离;若不存在,请说明理由.
w w w .
(第 24题图)
(第 25题图)
2013 年龙岩市初中毕业、升学考试
参 考 答 案 及 评 分 标 准
数 学
说明:评分最小单位为 1 分,若学生解答与本参考答案不同,参照给分.
一、选择题(本大题共 10 题,每题 4 分,共 40 分)
题号 1 2 3 4 5 6 7 8 9 10
答案 A C D D B C A C B B
二、填空题(本大题共 7 题,每题 3 分,共 21 分.注:答案不正确、不完整均不给分)
11. ( 2)a a 12.9 13.8 14.3
15. 70 16.①④ 17.
2 2a b
ab
.
三、解答题(本大题共 8 题,共 89 分)
18.(10 分,第(1)小题 5 分,第(2)小题 5 分)
(1)解:原式= 2 1 ( 1) 2 3 ······························································ 4 分
= 2 3 ·············································································· 5 分
(2)解:方程两边同乘(2x+1),得 4=x+2x+1················································· 2 分
3=3x
x=1·························································································· 3 分
检验:把 x=1 代入 2x+1=3≠0························································ 4 分
∴原分式方程的解为 x=1.····························································· 5 分
19.(8 分)解:原式=
(2 3)(2 3) 1
2 3 3 2 3
x x x
x x
········································· 4 分
=
3
x
···············································································6 分
当 x=2 时,原式=
2
3
.···································································8 分
20.(10 分)
(1)证明:(法一)如图:∵四边形 ABCD 是平行四边形
∴AD=BC,AD∥BC,∠3=∠4··························1 分
∵∠1=∠3+∠5,∠2=∠4+∠6··························································2 分
∠1=∠2
∴∠5=∠6·················································································· 3 分
∴△ADE≌△CBF ·······································································5 分
∴AE=CF ·················································································· 6 分
(法二)如图:连接 BD 交 AC 于点 O················ 1 分
在平行四边形 ABCD 中
OA=OC,OB=OD·····································2 分
∵∠1=∠2,∠7=∠8
∴△BOF≌△DOE········································································· 4 分
∴OE=OF ··················································································· 5 分
∴OA-OE=OC-OF
即 AE=CF.····················································································6 分
(2) )证明:(法一)∵∠1=∠2,
∴DE∥BF···············································································7 分
∵△ADE≌△CBF
∴DE=BF················································································ 9 分
∴四边形 EBFD 是平行四边形.···················································10 分
(法二)∵OE=OF,OB=OD···································································9 分
∴四边形 EBFD 是平行四边形.················································· 10 分
其他证法,请参照标准给分.
21.(10 分,第(1)小题 4 分,第(2)小题 3 分,第(3)小题 3 分)
(1) 0.11 , 540 ; (注:每空 2 分)
(2)36;
(3)9000.
22.(12 分,每小题 4 分)
(1) 6 ······························································································· 4 分
(2)
13
2
····························································································8 分
(3)∵∠C=90,BC= 3,EC=1
∴tan∠BEC=
BC
CE
= 3
∴∠BEC=60 ························································································ 9 分
由翻折可知:∠DEA= 45 ·········································································10 分
∴ 75AEA = D ED ······································································ 11 分
∴l 75 5 32 3
360 12
···································································12 分
23.(12 分,第(1)小题 5 分,第(2)小题 7 分)
5
10 7
12 7(10 ) 80
10 10(10 ) 100
a
a
a a
a a
解:(1)设需租赁甲、乙两种设备分别为 x、y 天.········································· 1 分
则依题意得
1 2 7 8 0
1 0 1 0 1 0 0
x y
x y
···················································· 3 分
解得
2
8
x
y
···········································································4 分
答:需租赁甲种设备 2 天、乙种设备 8 天. ···················································· 5 分
(2)设租赁甲种设备 a天、乙种设备(10- a )天,总费用为元.·······················6 分
依题意得
∴3≤ a≤5.
∵ a为整数,
∴ a=3、4、5.···················································································8 分
方法一:
∴共有三种方案.
方案(1)甲 3 天、乙 7 天,总费用 400×3+300×7=3300;····················9 分
方案(2)甲 4 天、乙 6 天,总费用 400×4+300×6=3400;·················· 10 分
方案(3)甲 5 天、乙 5 天,总费用 400×5+300×5=3500. ·················11 分
∵3300