绝密★启用前 试卷类型:A
2015 年临沂市初中学生学业考试试题
数 学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共 8 页,满分 120 分,考试时间 120 分钟.答
卷前,考生务必用 0.5 毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考
试结束后,将本试卷和答题卡一并交回.
2.答题注意事项见答题卡,答在本试卷上不得分.
第Ⅰ卷(选择题 共 42 分)
一、选择题(本大题共 14 小题,每小题 3 分,共 42 分)在每小题所给出的四个选项中,只有一项是
符合题目要求的.
1. 1
2
的绝对值是
(A) 1
2 . (B) 1
2
. (C) 2. (D) 2.
2.如图,直线 a∥b,∠1 = 60°,∠2 = 40°,则∠3 等于
(A) 40°.
(B) 60°.
(C) 80°.
(D) 100°.
3.下列计算正确的是
(A) 2 2 42a a a . (B) 2 3 6 3( )a b a b .
(C) 2 3 6a a a . (D) 8 2 4a a a .
4.某市 6 月份某周内每天的最高气温数据如下(单位:℃):24 26 29 26 29 32 29
则这组数据的众数和中位数分别是
(A) 29,29. (B) 26,26. (C) 26,29. (D) 29,32.
5.如图所示,该几何体的主视图是
a
b
1
3
2
(第 2 题图)
(A) (B) (C) (D)
6.不等式组 2 6
2 0x
x
,
≤ 的解集,在数轴上表示正确的是
(A) (B)
(C) (D)
7.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和
茶杯随机地搭配在一起. 则其颜色搭配一致的概率是
(A) 1
4 . (B) 1
2 . (C) 3
4 . (D) 1.
8.如图 A,B,C 是 Oe 上的三个点,若 100AOC o ,则 ABC 等于
(A) 50°. (B) 80°.
(C) 100°. (D) 130°.
9.多项式 2mx m 与多项式 2 2 1x x 的公因式是
(A) 1x . (B) 1x .
(C) 2 1x . (D) 21x .
10.已知甲、乙两地相距 20 千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间 t(单位:小时)关
于行驶速度 v(单位:千米/小时)的函数关系式是
(A) 20t v . (B) 20t v . (C) 20
vt . (D) 10t v .
11.观察下列关于 x 的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,….
按照上述规律,第 2015 个单项式是
(A) 2015x2015. (B) 4029x2014. (C) 4029x2015. (D) 4031x2015.
12.如图,四边形 ABCD 为平行四边形,延长 AD 到 E,使
DE=AD,连接 EB,EC,DB. 添加一个条件,不能..使四边形 DBCE
成为矩形的是
-3 -2 -1 0 1 2
-3 -2 -1 0 1 2
-3 -2 -1 0 1 2
-3 -2 -1 0 1 2
O
A
B
C
(第 8 题图)
A
D
E
C
B
(第 12 题图)
(第 5 题图)
(A) AB=BE. (B) BE⊥DC.
(C) ∠ADB=90°. (D) CE⊥DE.
13.要将抛物线 2 2 3y x x 平移后得到抛物线 2y x ,下列平移方法正确的是
(A) 向左平移 1 个单位,再向上平移 2 个单位.
(B) 向左平移 1 个单位,再向下平移 2 个单位.
(C) 向右平移 1 个单位,再向上平移 2 个单位.
(D) 向右平移 1 个单位,再向下平移 2 个单位.
14.在平面直角坐标系中,直线 y =-x+2 与反比例函数 1y x
的图象有唯一公共点. 若直线 y x b
与反比例函数 1y x
的图象有 2 个公共点,则 b 的取值范围是
(A) b﹥2.
(B) -2﹤b﹤2.
(C) b﹥2 或 b﹤-2.
(D) b﹤-2.
第Ⅱ卷(非选择题 共 78 分)
注意事项:
1.第Ⅱ卷分填空题和解答题.
2.第Ⅱ卷所有题目的答案,考生须用 0.5 毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不
得分.
二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)
15.比较大小:2_______ 3 (填“﹤”,“=”,“﹥”).
(第 14 题图)
x
y
O
2
2
16.计算: 2
4
2 2
a
a a a
____________.
17.如图,在Y ABCD 中,连接 BD, AD BD , 4AB , 3sin 4A ,则Y ABCD 的面积是________.
B
CD
A
O
B C
DE
A
(第 17 题图) (第 18 题图)
18.如图,在△ABC 中,BD,CE 分别是边 AC,AB 上的中线,BD 与 CE 相交于点 O,则 OB
OD
_________.
1 9 . 定 义 : 给 定 关 于 x 的 函 数 y , 对 于 该 函 数 图 象 上 任 意 两 点 ( x 1 , y 1 ),( x 2 , y 2 ),
当 x1﹤x2 时,都有 y1﹤y2,称该函数为增函数. 根据以上定义,可以判断下面所给的函数中,是增函数的有
______________(填上所有正确答案的序号).
① y = 2x; ② y = x+1; ③ y = x2 (x>0); ④ 1y x
.
三、解答题(本大题共 7 小题,共 63 分)
20.(本小题满分 7 分)
计算: ( 3 2 1)( 3 2 1) .
21.(本小题满分 7 分)
“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了 2014 年内
该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未
给出).
请你根据图中提供的信息,解答下列问题:
(1)补全条形统计图;
(2)估计该市这一年(365 天)空气质量达到“优”和“良”的总天数;
(3)计算随机选取这一年内的某一天,空气质量是“优”的概率.
某市若干天空气质量情况扇形统计图
轻微污染
轻度污染
中度污染
重度污染
良
优
5%
某市若干天空气质量情况条形统计图
36
30
24
18
12
6
0
优 良
天数
空气质
量类别
重度
污染
轻微
污染
轻度
污染
中度
污染
12
36
3 2 1
(第 21 题图)
22.(本小题满分 7 分)
小强从自己家的阳台上,看一栋楼顶部的仰角为 30°,看这栋楼底部的俯角为 60°,小强家与这栋楼的
水平距离为 42m,这栋楼有多高?
C
A
B
D
α
β
(第 22 题图)
23.(本小题满分 9 分)
如图,点 O 为 Rt△ABC 斜边 AB 上的一点,以 OA 为半径的⊙O 与 BC 切于点 D,与 AC 交于点 E,连
接 AD.
(1)求证:AD 平分∠BAC;
(2)若∠BAC = 60°,OA = 2,求阴影部分的面积(结果保留 ).
24.(本小题满分 9 分)
新农村社区改造中,有一部分楼盘要对外销售. 某楼盘共 23 层,销售价格如下:第八层楼房售价为 4000
元/米 2,从第八层起每上升一层,每平方米的售价提高 50 元;反之,楼层每下降一层,每平方米的售价
降低 30 元,已知该楼盘每套楼房面积均为 120 米 2.
若购买者一次性付清所有房款,开发商有两种优惠方案:
方案一:降价 8%,另外每套楼房赠送 a 元装修基金;
方案二:降价 10%,没有其他赠送.
(1)请写出售价 y(元/米 2)与楼层 x(1≤x≤23,x 取整数)之间的函数关系式;
(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.
B
C
E
A
O
D
(第 23 题图)
25.(本小题满分 11 分)
如图 1,在正方形 ABCD 的外侧,作两个等边三角形 ADE 和 DCF,连接 AF,BE.
(1)请判断:AF 与 BE 的数量关系是 ,位置关系是 ;
(2)如图 2,若将条件“两个等边三角形 ADE 和 DCF”变为“两个等腰三角形 ADE 和 DCF,且
EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;
(3)若三角形 ADE 和 DCF 为一般三角形,且 AE=DF,ED=FC,第(1)问中的结论都能成立吗?请
直接写出你的判断.
26.(本小题满分 13 分)
在平面直角坐标系中,O 为原点,直线 y =-2x-1 与 y 轴交于点 A,与直线 y =-x 交于点 B, 点 B 关于
原点的对称点为点 C.
(1)求过 A,B,C 三点的抛物线的解析式;
(2)P 为抛物线上一点,它关于原点的对称点
为 Q.
①当四边形 PBQC 为菱形时,求点 P 的坐标;
②若点 P 的横坐标为 t(-1<t<1),当 t 为何
值时,四边形 PBQC 面积最大,并说明理由.
参考答案及评分标准
说明:解答题给出了部分解答方法,考生若有其它解法,应参照本评分标准给分.
一、选择题(每小题 3 分,共 42 分)
(第 25 题图)
B A
E
F
C D
图 1 备用图
B A
C D
图 2
B A
E
C D
F
(第 26 题图)
O
x
y
A C
B
2 1y x y x
题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14
答案 A C B A D C B D A B C B D C
二、填空题(每小题 3 分,共 15 分)
15.>; 16. 2a
a
; 17. 3 7 ; 18.2; 19.①③.
三、解答题
20.解:方法一: ( 3 2 1)( 3 2 1)
= [ 3 ( 2 1) ][ 3 ( 2 1) ]··············································1 分
= 2 2( 3) ( 2 1) ································································3 分
3 (2 2 2 1) ································································5 分
3 2 2 2 1 ··································································6 分
2 2 .············································································· 7 分
方法二: ( 3 2 1)( 3 2 1)
2 2( 3) 3 2 3 1 2 3 ( 2) 2 1 1 3 1 2 1 1 ··········3 分
3 6 3 6 2 2 3 2 1 ··················································· 5 分
2 2 .······························································································ 7 分
21.解:(1)图形补充正确.·········································································2 分
(2)方法一:由(1)知样本容量是 60,
∴该市 2014 年(365 天)空气质量达到“优”、“良”的总天数约为:
12 36 365 29260
(天).············································································5 分
方法二:由(1)知样本容量是 60,
∴该市 2014 年(365 天)空气质量达到“优”的天数约为:
12 365 7360 (天).·················································································· 3 分
该市 2014 年(365 天)空气质量达到“良”的天数约为:
36 365 21960 (天).·················································································4 分
∴该市 2014 年(365 天)空气质量达到“优”、“良”的总天数约为:
73+219=292(天).···················································································· 5 分
(3)随机选取 2014 年内某一天,空气质量是“优”的概率为:
12 1.60 5 ····································································································7 分
22.解:如图,α = 30°,β = 60°,AD = 42.
某市若干天空气质量情况条形统计图
36
30
24
18
12
6
0
优 良
天数
空气质
量类别
重度
污染
轻微
污染
轻度
污染
中度
污染
12
36
3 2 1
6
A
B
Dα
β
∵ tan BD
AD
, tan CD
AD
,
∴BD = AD·tanα = 42×tan30°
= 42× 3
3 = 14 3 .···························· 3 分
CD=AD tanβ=42×tan60°
=42 3 .··········································6 分
∴BC=BD+CD=14 3 +42 3
=56 3 (m).
因此,这栋楼高为 56 3 m.··········································································7 分
23.(1)证明:连接 OD.
∵BC 是⊙O 的切线,D 为切点,
∴OD⊥BC.····································1 分
又∵AC⊥BC,
∴OD∥AC,································· 2 分
∴∠ADO=∠CAD.···························3 分
又∵OD=OA,
∴∠ADO=∠OAD,··················································································· 4 分
∴∠CAD=∠OAD,即 AD 平分∠BAC.··························································· 5 分
(2)方法一:连接 OE,ED.
∵∠BAC=60°,OE=OA,
∴△OAE 为等边三角形,
∴∠AOE=60°,
∴∠ADE=30°.
又∵ 1 302OAD BAC ,
∴∠ADE=∠OAD,
∴ED∥AO,···································· 6 分
∴S△AED=S△OED,
∴阴影部分的面积 = S 扇形 ODE = 60 4 2
360 3
.·············································· 9 分
方法二:同方法一,得 ED∥AO,································································ 6 分
∴四边形 AODE 为平行四边形,
∴ 1S S 2 3 3.2AED OAD V V ··································································7 分
又 S 扇形 ODE-S△OED= 60 4 23 3.360 3
··················································8 分
∴阴影部分的面积 = (S 扇形 ODE-S△OED) + S△AED = 2 23 33 3 .····················9 分
24.解:(1)当 1≤x≤8 时,y=4000-30(8-x)
=4000-240+30 x
=30 x+3760;················································ 2 分
B
C
E
A
O
D
B
C
E
A
O
D
当 8<x≤23 时,y=4000+50(x-8)
=4000+50 x-400
=50 x+3600.
∴所求函数关系式为 30 3760
50 3600
xy x
························4 分
(2)当 x=16 时,
方案一每套楼房总费用:
w1=120(50×16+3600)×92%-a=485760-a;····································5 分
方案二每套楼房总费用:
w2=120(50×16+3600)×90%=475200.··············································· 6 分
∴当 w1<w2 时,即 485760-a<475200 时,a>10560;
当 w1=w2 时,即 485760-a=475200 时,a=10560;
当 w1>w2 时,即 485760-a>475200 时,a<10560.
因此,当每套赠送装修基金多于 10560 元时,选择方案一合算;
当每套赠送装修基金等于 10560 元时,两种方案一样;
当每套赠送装修基金少于 10560 元时,选择方案二合算.···································· 9 分
25.解:(1)AF=BE,AF⊥BE. ···································································2 分
(2)结论成立.························································································· 3 分
证明:∵四边形 ABCD 是正方形,
∴BA=AD =DC,∠BAD =∠ADC = 90°.
在△EAD 和△FDC 中,
,
,
,
EA FD
ED FC
AD DC
∴△EAD≌△FDC.
∴∠EAD=∠FDC.
∴∠EAD+∠DAB=∠FDC+∠CDA,即∠BAE=∠ADF.······································· 4 分
在△BAE 和△ADF 中,
,
,
,
BA AD
BAE ADF
AE DF
∴△BAE≌△ADF.
∴BE = AF,∠ABE=∠DAF.········································································· 6 分
∵∠DAF +∠BAF=90°,
∴∠ABE +∠BAF=90°,
∴AF⊥BE.································································································9 分
(3)结论都能成立.··················································································11 分
26.解:(1)解方程组 2 1y x
y x
,
, 得 1
1.
x
y
,
∴点 B 的坐标为(-1,1).··········································································1 分
(1≤x≤8,x 为整数),
(8<x≤23,x 为整数).
B A
E
C D
F
∵点 C 和点 B 关于原点对称,
∴点 C 的坐标为(1,-1).··········································································2 分
又∵点 A 是直线 y=-2x-1 与 y 轴的交点,
∴点 A 的坐标为(0,-1).··········································································3 分
设抛物线的解析式为 y=ax2+bx+c,
∴
1
1
1.
a b c
a b c
c
,
,解得
1
1
1.
a
b
c
,
,
∴抛物线的解析式为 y=x2-x-1.······································································5 分
(2)①如图 1,∵点 P 在抛物线上,
∴可设点 P 的坐标为(m,m2-m-1).
当四边形 PBQC 是菱形时,O 为菱形的中心,
∴PQ⊥BC,即点 P,Q 在直线 y = x 上,
∴m = m2-m-1,························································································7 分
解得 m = 1± 2 .·······················································································8 分
∴点 P 的坐标为(1+ 2 ,1+ 2 )或(1- 2 ,1- 2 ).·································· 9 分
图 1 图 2
②方法一:
如图 2,设点 P 的坐标为(t,t2 - t - 1).
过点 P 作 PD∥y 轴,交直线 y = - x 于点 D,则 D(t,- t).
分别过点 B,C 作 BE⊥PD,CF⊥PD,垂足分别为点 E,F.
∴PD = - t -( t2 - t -1) = - t2 + 1,BE + CF = 2,········································10 分
∴S△PBC= 1
2 PD·BE + 1
2 PD·CF
= 1
2 PD·(BE + CF)
= 1
2
(- t2 + 1)×2
=- t2 + 1.····················································································12 分
∴S PBQCY =-2t2+2.
O
x
y
P A C
B Q
F
D
E
2 1y x y x
2 1y x x
O x
y
P
A C
B
Q
2 1y x y x
2 1y x x
∴当 t=0 时,S PBQCY 有最大值 2. ······························································· 13 分
方法二:
如图 3,过点 B 作 y 轴的平行线,过点 C 作 x 轴的平行线,两直线交于点 D,连接 PD.
∴S△PBC=S△BDC-S△PBD-S△PDC
= 1
2
×2×2- 1
2
×2(t+1)- 1
2
×2(t2-t-1+1)
=-t2+1.······················································································· 12 分
∴S PBQCY =-2t2+2.
∴当 t=0 时,S PBQCY 有最大值 2. ······························································· 13 分
图 3 图 4
方法三:如图 4,过点 P 作 PE⊥BC,垂足为 E,作 PF∥x 轴交 BC 于点 F.
∴PE=EF.
∵点 P 的坐标为(t,t2-t-1),
∴点 F 的坐标为(-t2+t+1,t2-t-1).
∴PF=-t2+t+1-t=-t2+1.
∴PE= 2
2
(-t2+1).················································································11 分
∴S△PBC= 1
2 BC·PE= 1
2
× 2 2 × 2
2
(-t2+1)
=-t2+1.······················································································· 12 分
∴S PBQCY =-2t2+2.
∴当 t=0 时,S PBQCY 有最大值 2.
O
x
y
P
A C
B Q
D
2 1y x y x
2 1y x x
O
x
y
P
A C
B Q
E
2 1y x y x
2 1y x x
F