2008-2009学年度山东潍坊市诸城第一学期九年级期末考试
数学试卷
说明:含卷面分5分。
一、选择题(本大题共有12小题,每小题3分,共36分。在每题所给出的四个选项中,只有一个是符合题意
的,错选、不选或选出的答案超过一个,均记0分)
1.下列运算正确的是
A. 563224 B. 653525
C. 363332 D. 15153553
2.如果一元二次方程 023 2 xx 的两个根是 21 xx 、 ,那么 21 xx 等于
A.2 B.0 C.
3
2 D.
3
2
3.如下图,在△ABC中,D、E分别为AB、AC的中点,若△ABC的面积为12cm2,则△ADE的面积为
A.2 cm2 B.3 cm2 C.4 cm2 D.6 cm2
4.在△ABC中,AB=AC=3,BC=2,则 Bcos6 等于
A.3 B.2 C. 33 D.
3
3
5.数学课外活动小组为测量学校旗杆AB的高度,在同一时刻,测得一标杆EF的高为1.8米,其影长为1.2
米,此时旗杆的影长为8米,则旗杆的实际高度为
A.8米 B.12米 C.10.5米 D.5.3米
6.若 30tan45cos60sin cba ,, ,则它们之间的大小关系为
A. abc B. cab C. bca D. acb
7.一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放
回,摸出黑色为赢,这个游戏是
A.公平的 B.不公平的
C.先摸者赢的可能性大 D.后摸者赢的可能性大
8.下列事件的概率是1的是
A.任意两个偶数的和是4的倍数 B.任意两个奇数的和是2的倍数
C.任意两个质数的和是2的倍数 D.任意两个整数的和是2的倍数
9.元旦期间,小明带领小组成员做了测量电线杆高度的活动,在离电线杆21米的D点,用高1.2米的测角仪
CD测得电线杆顶端A的仰角 30a ,则电线杆AB的高为
A. )2.139( 米 B. )2.137( 米
C. )2.129( 米 D. )2.127( 米
10.小明家过年吃饺子,妈妈包了50个肉饺子和70个素饺子,小明在年夜饭中,从中任取一个吃,他吃到
素水饺的概率是
A.
7
5 B.
7
1 C.
50
1 D.
12
7
11.将△ABC各顶点的横坐标不变,纵坐标分别减3,连结三个点所成的三角形是由△ABC
A.向左平移3个单位所得 B.向右平移3个单位所得
C.向上平移3个单位所得 D.向下平移3个单位所得
12.如下图,河堤横断面为梯形,上底为4米,堤高为6米,斜坡AD的坡度是1︰3,斜坡CB的坡度是45°,
则河堤横断面的面积是
A.48m2 B.84m2 C.96m2 D.192m2
二、填空题(共6小题,共18分)
13.方程 xxx )1( 的解是___________。
14.如下图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果
3
2
BC
BE ,那么
FD
BF ___________。
15.抛掷一枚均匀的硬币2次,2次抛掷的结果都是正面朝上的概率为___________。
16.如下图,在矩形ABCD中,DE⊥AC于E,设 ADE ,且
5
3cos ,AB=4,则AD的长为___________。
17.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于___________。
18.小亮在自家楼房窗户点A处测得楼前一棵树CD的顶端C的俯角为60°,又知水平距离BD=10m,点A离地面
24m,则树高CD等于___________。
三、解答题(共6小题,共61分)
19.求值:(本小题满分8分)
(1) 60tan3
145sin30sin 22
(2) )60tan30sin4)(60cos430(cot
20.(本小题满分10分)
(1)已知 0432 xx ,试求 4793 2 xx 的值。
(2)已知 0322 yy 的两个根是 21 yy , ,求代数式 21
2
2
2
1 22 yyyy 的值。
21.(本小题满分10分)
某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上两探测点A,B相距3米,
探测线与地面的夹角分别是30°和60°(如下图),试确定生命所在点C的深度,点C到点A的水平距离。
(结果精确到0.1米,参考数据 41.12 , 73.13 )
22.(本小题满分10分)
一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其他都相同),其中有白球2个,黄
球1个,红球若干个。若从中任意摸出一个球,这个是白球的概率为0.5。
(1)求口袋中红球的个数;
(2)小明认为口袋中共有三种颜色的球,所以从口袋中任意摸出一球,摸到红球、白球或黄球的概率
都是
3
1 ,你认为对吗?请你用列表或树状图的方法说明理由。
23.(本小题满分11分)
如下图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q。
(1)请写出图中各对相似三角形(相似比为1除外);
(2)求BP︰PQ︰QR。
24.(本小题满分12分)
如下图,AD为Rt△ABC斜边BC上的高,点E为DA延长线上一点,连结BE,过点C作CF⊥BE于点F,交AB、
AD于M、N两点。
(1)若线段AM、AN的长是关于 x 的一元二次方程 04
52 222 mmnnmxx 的两个实数根,求
证:AM=AN;
(2)若
8
9DN8
15AN , ,求DE的长。
2008-2009学年度潍坊市诸城第一学期九年级期末考试
数学试卷参考答案及评分标准
一、选择题
1.D 2.B 3.B 4.B 5.B 6.A
7.A 8.B 9.B 10.D 11.D 12.C
二、填空题
13. 01 x , 22 x 14.
3
2 15.
4
1
16.
3
16 17.
5
12 18. )31024( m
三、解答题
19.(1)2 (2)1
20.(1)35 (2)6
21.①深度约为2.6米 ②与A点的水平距离为4.5米
22.(1)口袋中红球的个数是1
(2)小明的认为不对
树状图如下:
∴
2
1
4
2)(P 白 ,
4
1)(P 黄 ,
4
1)(P 红
∴小明的认为不对
23.(1)△BCP∽△BER △PCQ∽△PAB
△PCQ∽△RDQ △PAB∽△RDQ
(2)3︰1︰2
24.解:(1) 0)2()4
5(4)2( 2222 nmmmnnm
∴ 0)2( 2 nm
∴ 02 nm
∴ 0
∴一元二次方程 04
52 222 mmnnmxx 有两个相等的实数根
∴AM=AN
(2)∵∠BAC=90°,AD⊥BC
∴∠ADC=∠ADB=90°,∠DAC=∠DBA
∴△ADC∽△BDA
∴
AD
DC
BD
AD
∴ DCBDAD2
∵CF⊥BE,∴∠FCB+∠EBD=90°
∵∠E+∠EBD=90°
∴∠E=∠FCB
∵∠NDC=∠EDB=90°
∴△EBD∽△CND
∴
DN
BD
CD
ED ,∴ DNEDDCBD
∴ DNEDAD2
∵
8
9DN8
15AN ,
∴ 3ANDNAD
∴ DE8
932
∴ 8DE