广东东莞九年级数学上期末考试试卷(无答案)
加入VIP免费下载

广东东莞九年级数学上期末考试试卷(无答案)

ID:625366

大小:137 KB

页数:5页

时间:2021-03-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
B A C D 90 80 50 E O A B C D 广东省东莞市 2009—2010 学年初三第一学期期末考试数学模拟试题 一、 选择题(每题 3 分,共 15 分) 1、方程 xx 42  的根是( ) A、 4x B、 2x C、 40  xx 或 D、 0x 2、小明用一枚均匀的硬币进行试验,连续抛三次,结果都是同一面.....的概率是( ) A、 2 1 B、 4 1 C、 6 1 D、 8 1 3、下列计算正确的是( ) A、 224  B、 10220  C、 632  D、 3)3( 2  4、如图 1 所示,将△AOB 绕点 O 逆时针旋转 090 ,得到△ 'A O 'B , 若点 A 的坐标为(2,1),则点 'A 的坐标为( ) A、(-1,-2) B、(-1,2) C、(-2,1) D、(-2,-1) 5、如图 2 所示,量角器外缘上有 A、B 两点,它们所表示的读数分别为 080 、 050 , 则∠ACB 的度数为( ) A、 050 B、 030 C、 025 D、 015 二、填空题(每题 3 分,共 15 分) 6、函数 xy  1 中自变量 x 的取值范围是____________________ 7、已知⊙O1 的半径为 3cm,⊙O2 的半径为 4cm,两圆的圆心距为 1cm,则两圆的位置关系是_____ 8、若某商品原价是 200 元,连续两次降价后售价为 148 元,若平均每次降价的百分率为 x ,则所列的方 程是_________________________________ 9、一元二次方程 0642  xx 配方后化成 bax  2)( 的形式为___________________ 10、如图,AB 为⊙O 的直径,CD 是弦,CD⊥AB 于 E, 若 CD=6,OE=4,则 AC 的长为_______ 三、 计算题(每题 6 分,共 30 分) 11、计算: 222 14)12)(12()3( 0  12、计算: 32)483 12273 2(  13 先化简,再求值: 14、已知 23,23  ba 。 1 1) 1 2 1 1( 2    aa a a 其中 a 是方程 012 2  xx 的解。 求代数式 22 baba  的值。 15、一只不透明的袋子中,装有 2 个白球(标有号码 1、2)和 1 个红球,这些球除颜色外其他都相同. (1)搅匀后从中摸出一个球,摸到白球的概率是多少? (2)搅匀后从中一次摸出两个球,请用树状图(或列表法)求这两个球都是白球的概率 四、解答题(每题 8 分,共 40 分) 16、如图,有一面积是 120 平方米的长方形鸡场,鸡场的一边靠墙(墙长 18 米),墙对面有一个 2 米宽的 门,另三边用竹篱笆围城,篱笆总长 30 米, 求:(1)鸡场的长和宽各为多少米? (2)能否围成面积为 130m2 的鸡场?请说明理由。 17、如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,在建立平面直角 坐 标 系 后 , ABC△ 的顶点均在格点上,点C 的坐标为 (4 1), . ①把 ABC△ 向上平移 5 个单位后得到对应的 1 1 1A B C△ , 画出 1 1 1A B C△ ,并写出 1C 的坐标; ② 画出与 1 1 1A B C△ 绕点O 逆时针旋转 900 后的 2 2 2A B C△ , 并求点 C1 旋转到 C2 所经过的路线长. 18、某公园旅游的收费标准是:旅游人数不超过 25 人,门票为每人 100 元,超过 25 人,每超过 1 人,每 张门票降低 2 元,但每张门票不低于 70 元,一个旅游团共支付 2700 元,求这个旅游团共多少人? 第22题图 2m 18m O P A B D E C 19、如图所示,P 是⊙O 外一点,PA、PB 分别和⊙O 相切于 A、B,PA=PB=4cm,∠P=400, C 是劣弧 AB 上任 意一点,过 C 作⊙O 的切线分别交 PA、PB 于 D、E。 (1)求△PDE 的周长;(2)求∠DOE 的度数。 20、已知扇形的圆心角为 1200,面积为 300 cm2。 (1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的全面积为多少? 第21题图 F D B C A O 附加题:1、如图,C 是射线 OE 上的一动点,AB 是过点 C 的弦,直线 DA 与 OE 的交点为 D,现有三个诊断: (1)DA 是⊙O 的切线; (2)DA=DC; (3)OD⊥OB。请以其中两个为条件,另一个为结论,写出一 个真命题,用“○○ ○”表示。并证明。 我的命题是: 。 证明: 2、已知,如图,AC 是⊙O 的直径,AB、BD 是弦,AC⊥BD 于 F,∠A=30°,OF= 3 cm, (1)求图中阴影部分的面积。(2)用图中阴影部分的扇形围成一个圆锥,求围成的圆锥的底面半径。

资料: 4.5万

进入主页

人气:

10000+的老师在这里下载备课资料