资阳市 2013 年高中阶段教育学校招生统一考试
数 学
全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 4 页。全卷满分 120 分。考试时
间共 120 分钟。
注意事项:
1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号。考试结束,将试
卷和答题卡一并交回。
2.选择题每小题选出的答案须用 2B 铅笔在答题卡上把对应题目....的答案标号涂黑。如需改动,
用橡皮擦擦净后,再选涂其它答案。非选择题须用黑色墨水的钢笔或签字笔在答题卡上对应题号位
置作答,在试卷上作答,答案无效。
第Ⅰ卷(选择题 共 30 分)
一、选择题:(本大题共 10 个小题,每小题 3 分,共 30 分)在每小题给出的四个选项中,只有
一个选项符合题意.
1.16 的平方根是
A.4 B.±4 C.8 D.±8
2.一个正多边形的每个外角都等于 36°,那么它是
A.正六边形 B.正八边形 C.正十边形 D.正十二边形
3.在一个不透明的盒子里,装有 4 个黑球和若干个白球,它们除颜色外没有任何其他区别,摇
匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球 40 次,其中 10 次摸到
黑球,则估计盒子中大约有白球
A.12 个 B.16 个 C. 20 个 D.30 个
4.在函数 y = 1
1x
中,自变量 x 的取值范围是
A.x≤1 B.x≥1 C.x<1 D.x>1
5.如图1,点E在正方形ABCD内,满足 90AEB ,AE=6,BE=8,则
阴影部分的面积是
A. 48 B. 60 C. 76 D.80
6.资阳市 2012 年财政收入取得重大突破,地方公共财政收入用四舍五入法取近似值后为 27.39
亿元,那么这个数值
A.精确到亿位 B.精确到百分位 C.精确到千万位 D.精确到百万位
7.钟面上的分针的长为 1,从 9 点到 9 点 30 分,分针在钟面上扫过的面积是
A. 1
2
B. 1
4
C. 1
8
D.
8.在芦山地震抢险时,太平镇部分村庄需 8 组战士步行运送物资,要求每组分配的人数相同.
若按每组人数比预定人数多分配 1 人,则总数会超过 100 人;若按每组人数比预定人数少分配 1 人,
图 1
则总数不够 90 人,那么预定每组分配的人数是
A.10 人 B.11 人 C.12 人 D.13 人
9.从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征
10.如图 2,抛物线 2 + ( 0)y ax bx c a 过点(1,0)和点(0,-2),且
顶点在第三象限,设 P= a b c ,则 P 的取值范围是
A.-4<P<0 B.-4<P<-2
C.-2<P<0 D.-1<P<0
第Ⅱ卷(非选择题 共 90 分)
二、填空题:(本大题共 6 个小题,每小题 3 分,共 18 分)把答案直接填在题中横线上.
11.(-a2b)2·a =_______.
12.若一组数据 2、-1、0、2、-1、a 的众数为 2,则这组数据的平均数为______
13.在矩形 ABCD 中,对角线 AC、BD 相交于点 O,若∠AOB=60°,AC=10,
则 AB=_____.
14.在一次函数 (2 ) 1y k x 中,y 随 x 的增大而增大,则 k 的取值范围为_______.
15.如图 3,在 Rt△ABC 中,∠C=90°,∠B=60°,点 D 是 BC 边上的点,CD=1,
将△ABC 沿直线 AD 翻折,使点 C 落在 AB 边上的点 E 处,若点 P 是直线 AD 上的
动点,则△PEB 的周长的最小值是________.
16.已知在直线上有 n(n≥2 的正整数)个点,每相邻两点间距离为 1,从左
边第 1 个点起跳,且同时满足以下三个条件:①每次跳跃均尽可能最大;②跳 n 次
后必须回到第 1 个点;③这 n 次跳跃将每个点全部到达.设跳过的所有路程之和为 Sn ,则
25S =______________.
三、解答题:(本大题共 8 个小题,共 72 分)解答应写出必要的文字说明、证明过程或演算步骤.
17.(本小题满分 7 分)解方程: 2
2 1+4 2 2
x
x x x
18.(本小题满分 8 分)体考在即,初三(1)班的课题研究小组对本年级 530 名学生的体育达标情况进
行调查,制作出图4 所示的统计图,其中 1 班有50 人.(注:30 分及以上为达标,满分 50 分.)
根据统计图,解答下面问题:
(1)初三(1)班学生体育达标率和本年级其余各班学生体育达标率各是多少?(4 分)
(2)若除初三(1)班外其余班级学生体育考试成绩在 30—40 分的有 120 人,请补全扇形统计图;
(注:请在图中注明分数段所对应的圆心角的度数)(2 分)
图 3
图 2
图 4
(3)如果要求全年级学生的体育达标率不低于 90%,试问在本次调查中,该年级全体学生的体
育达标率是否符合要求?(2 分)
19.(本小题满分 8 分)在关于 x、y 的二元一次方程组 2
2 1
x y a
x y
中.
(1)若 a =3,求方程组的解;(4 分)
(2)若 (3 )S a x y ,当 a 为何值时, S 有最值;(4 分)
20.(本小题满分 8 分)在⊙O 中,AB 为直径,点 C
为圆上一点,将劣弧沿弦 AC 翻折交 AB 于点 D,连结 CD.
(1)如图 5-1,若点 D 与圆心 O 重合,AC=2,求
⊙O 的半径 r;(6 分)
(2)如图 5-2,若点D 与圆心O 不重合,∠BAC=25°,
请直接写出∠DCA 的度数. (2 分)
21.(本小题满分 9 分)如图 6,已知直线 l 分别与 x
轴、y 轴交于 A、B 两点,与双曲线 ay x
(a≠0,x>0)
分别交于 D、E 两点.
(1)若点 D 的坐标为(4,1),点 E 的坐标为(1,4):
① 分别求出直线 l 与双曲线的解析式;(3 分)
② 若将直线 l 向下平移 m(m>0)个单位,当 m 为何值时,直线 l
与双曲线有且只有一个交点?(4 分)
(2)假设点 A 的坐标为(a,0),点 B 的坐标为(0,b),点 D 为线段
AB 的 n 等分点,请直接写出 b 的值. (2 分)
22.(本小题满分 9 分)钓鱼岛历来是中国领土,以它为圆心在周围 12
海里范围内均属于禁区,不允许它国船支进入.如图 7,今有一中国海监船在位于钓鱼岛 A 正南方向距
岛 60 海里的 B 处海域巡逻,值班人员发现在钓鱼岛的正西方向 52 海里的 C 处有一艘日本渔船,正
以 9 节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿北偏西 30°的方向以 12
节的速度前往拦截,其间多次发出警告,2 小时后海监船到达 D 处,与此同时日本渔船到达 E 处,
此时海监船再次发出严重警告.
(1)当日本渔船收到严重警告信号后,必须沿北偏东转向多少度
航行,才能恰好避免进入钓鱼岛 12 海里禁区?(4 分)
(2)当日本渔船不听严重警告信号,仍按原速度、原方向继续前
进,那么海监船必须尽快到达距岛 12 海里,且位于线段 AC 上的 F 处
强制拦截渔船,问海监船能否比日本渔船先到达 F 处?(5 分)
(注:① 中国海监船的最大航速为 18 节,1 节=1 海里/时;②参
考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31, 2 1.4 ,
3 1.7 )
图 5-1 图 5-2
图 6
图 7
23.(本小题满分 11 分)在一个边长为 a(单位:cm)的正方形 ABCD 中,点 E、M 分别是线段 AC、
CD 上的动点,连结 DE 并延长交正方形的边于点 F,过点 M 作 MN⊥DF 于 H,交 AD 于 N.
(1)如图 8-1,当点 M 与点 C 重合,求证:DF=MN;(4 分)
(2)如图 8-2,假设点 M 从点 C 出发,以 1cm/s 的速度沿 CD 向点 D 运动,点 E 同时从点 A
出发,以 2 cm/s 速度沿 AC 向点 C 运动,运动时间为 t(t>0):
① 判断命题“当点 F 是边 AB 中点时,则点 M 是边 CD 的三等分点”的真假,并说明理由. (4 分)
② 连结 FM、FN,△MNF 能否为等腰三角形?若能,请写出 a、t 之间的关系;若不能,请说
明理由. (3 分)
24. (本小题满分 12 分)如图 9,四边形 ABCD 是平行四边形,过点 A、C、D 作抛物线
2 ( 0)y ax bx c a ,与x 轴的另一交点为E,连结CE,点A、B、D 的坐标分别为(-2,0)、(3,0)、
(0,4).
(1)求抛物线的解析式;(3 分)
(2)已知抛物线的对称轴 l 交 x 轴于点 F,交线段 CD 于点 K,点 M、N 分别是直线 l 和 x 轴上
的动点,连结 MN,当线段 MN 恰好被 BC 垂直平分时,求点 N 的坐标;(4 分)
(3)在满足(2)的条件下,过点 M 作一条直线,使之将四边形 AECD 的面积分为 3∶4 的两
部分,求出该直线的解析式. (5 分)
资 阳 市 2013 年 高 中 阶 段 教 育 学 校 招 生 统 一 考 试
数学试题参考答案及评分意见
说 明:
1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.
2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见
给分.
3. 考生的解答可以根据具体问题合理省略非关键步骤.
4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未
改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后
面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.
5. 给分和扣分都以 1 分为基本单位.
6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标
准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.
一、选择题(每小题 3 分,共 10 个小题,满分 30 分):
1-5. BCADC;6-10. DACBA.
图 9图 8-1 图 8-2
二、填空题(每小题 3 分,共 6 个小题,满分 18 分):
11. 5 2a b ;12. 2
3
;13. 5;14. k<2;15. 3+1;16. 312.
三、解答题(共 8 个小题,满分 72 分):
17. 2( 2) 2x x x ·····································································································3 分
2 4 2x x x ········································································································4 分
2 4 2x x x
3x ························································································································6 分
经检验, 3x 是原方程的解.·······························································································7 分
18. (1) 初三(1)班体育达标率为 90%,
初三年级其余班级体育达标率为 1-12.5%=87.5%;····································································4 分
(2) 成绩在 30—40 分所对应的圆心角为 90°,40—50 分所对应的圆心角为 225°.······························ 6 分
(3) 全年级同学的体育达标率为(420+45)÷530≈87.8%<90%,所以不达标.···································8 分
19.(1) 1
1
x
y
,··············································································································4 分
(2) 易求 3 1x y a ,································································································5 分
则 2S a a ,················································································································ 6 分
∴ 2 21 1( )2 4S a a a ,····························································································7 分
∴当 1
2a 时, S 有最小值.······························································································ 8 分
20. (1) 过点 O 作 AC 的垂线交 AC 于 E、交劣弧于 F,由题意可知,OE=EF,··························· 1 分
∵ OE⊥AC,∴AE= 1
2 AC ,································································································3 分
在 Rt△AOE 中, 2 2 2AO OE AE ,················································································· 4 分
∴ 2 211 ( )2r r ,∴r= 2 3
3
.····························································································· 6 分
(2)∠DCA=40°.·············································································································· 8 分
21. (1) ①易求反比例函数的解析式为 4y x
,··········································································1 分
直线 AB 的解析式为 y = -x+5;······························································································3 分
② 依题意可设向下平移 m(m>0)个单位后解析式为 5y x m ,······································ 4 分
由
5
4
y x m
y x
,得 2 (5 ) 4 0x m x ,···································································· 5 分
∵ 平移后直线 l 与反比例函数有且只有一个交点,∴△= 2( 5) 16 0m ,
∴ 1 1m , 2 9m (舍去).······························································································6 分
即当 1m 时,直线 l 与反比例函数有且只有一个交点;····························································7 分
(2)
2
1
nb n
.·················································································································· 9 分
22. (1) 过点 E 作⊙A 的切线 EG,连结 AG,
AE=AC-CE=52-18=34,AG=12,··························································································· 2 分
sin∠GEA= AG
AE
≈0.35,·······································································································3 分
∴转向的角度至少应为北偏东 69.5 度;··················································································4 分
(2) 过点 D 作 DH⊥AB 于 H,
由题意知,BD=24,∴DH=12,BH=12 3 ,···········································································5 分
易求四边形 FDHA 为矩形,∴FD=AH=60-12 3 ,··································································· 7 分
∴ 海监船到达 F 处的时间为(60-12 3 )÷18≈ 2.2 时,····························································8 分
日本渔船到达 F 处的时间为(34-12)÷9≈2.4 时,
∴海监船比日本船先到达 F 处.····························································································· 9 分
23. (1) 易证△ADF≌△MDN,则 DF=MN;········································································4 分
(2)① 解法一:
该命题为真命题.················································································································5 分
过点 E 作 EG⊥AD 于点 G,
依题意得,AE= 2 t ,易求 AG=EG=t,·················································································6 分
CM=t,DG=DM= a t
易证△DGE≌△MDN,∴ DN EG t CM ·······································································7 分
由△ADF∽△DMN,得 DN AF
DM AD
,
又∵点 F 是线段 AB 中点,AB=AD,
∴ 1
2
AF DN
AB DM
,∴DM=2DN,即点 M 是 CD 的三等分点.···················································· 8 分
解法二:该命题为真命题.····································································································5 分
易证△AEF∽△CED, AE AF
EC CD
,
易证△ADF∽△DMN, DN AF
DM AD
,
又∵AD=CD,∴ DN AE
DM EC
,···························································································· 6 分
依题意得:AE= 2 t ,CM= t,EC= 2 2a t ,DM= a t
∴ 2
2 2
t DN
a ta t
, DN t CM ················································································ 7 分
又∵点 F 是线段 AB 中点,AB=AD,
∴ 1
2
AF DN
AB DM
,∴DM=2DN,即点 M 是 CD 的三等分点.···················································· 8 分
② 假设 FN=MN,由 DM=AN 知△AFN≌△DNM,∴AF=DN= t,
又由△DAF∽△MDN,得 DN AF
DM AD
,∴ t AF
a t a
,∴ atAF a t
,
∴ at
a t = t, t=0;
∴FN=MN 不成立;············································································································9 分
假设 FN=MF,由 MN⊥DF 知,HN=HM,∴DN=DM=MC,此时点 F 与点 B 重合,
∴ 当 t = 1
2 a 时, FN=MF;········································································································· 10 分
假设 FN=MN,显然点 F 在 BC 边上,易得△MFC≌△NMD,∴FC=DM= a t ,
又由△NDM∽△DCF,∴ DN DC
DM FC
,∴ t a
a t FC
,∴ ( )a a tFC t
∴ ( )a a t
t
= a t ,∴ a t ,此时点 F 与点 C 重合,
即当 a t 时,FN=MN.······································································································· 11 分
24. (1) ∵点 A、B、D 的坐标分别为(-2,0)、(3,0)、(0,4),
且四边形 ABCD 是平行四边形,
∴ AB=CD=5,则点 C 的坐标为(5,4),··············································································· 1 分
易求抛物线的解析式为 22 10 47 7y x x ;······································································· 3 分
(2) 解法一:
连结 BD 交对称轴于 G,在 Rt△OBD 中,易求 BD=5,
∴CD=BD,则∠DCB=∠DBC,又∵∠DCB=∠CBE,∴∠DBC=∠CBE,······································ 4 分
过 G 作 GN⊥BC 于 H,交 x 轴于 N,易证 GH=HN,·································································5 分
∴点 G 与点 M 重合,求出直线 BD 的解析式 y= 4 43 x ,
根据抛物线可知对称轴方程为 5
2x ,则点 M 的坐标为( 5
2
, 2
3
),
即 GF= 2
3
,BF= 1
2
,∴BM= 2 2 5
6FM FB ,··································································· 6 分
又∵MN 被 BC 垂直平分,∴BM=BN= 5
6
,
∴点 N 的坐标为( 23
6
,0);·······························································································7 分
解法二:设点 M( 5
2
,b),点 N(a,0),
则 MN 的中点坐标为( 5 2 ,4 2
a b ),·····················································································4 分
求得直线 BC 的解析式为 2 6y x ,代入得 2 7a b …①···················································· 5 分
延长 CB 交对称轴于点 Q,可求点 Q 的坐标为( 5
2
,-1),又易得∠MQB=∠MNF,
∴ 1tan tan 52
2
bMQB MNF
a
,∴ 2 4 5a b …②·················································6 分
由①、②得, 23
6a , 2
3b ,∴点 N 的坐标为( 23
6
,0).···················································· 7 分
(3)解法一:过点 M 作直线交 x 轴于点 1P ,易求四边形 AECD 的面积为 28,四边形 ABCD 的面积为 20,由“四
边形 AECD 的面积分为 3:4”可知直线 1PM 必与线段 CD 相交,设交点为 1Q ,······································ 8 分
四边形 1 1APQ D 的面积为 1S ,四边形 1 1PECQ 的面积为 2S ,点 P1 的坐标为(a,0),假设点 P 在对称轴的左侧,
则 1
5
2PF a , 1 7PE a ,
由△ 1MKQ ∽△ 1MFP ,得
1 1
MK FM
Q K FP
,易求 1Q K = 1
55 5( )2PF a ,
∴ 1
5 55( ) 5 102 2CQ a a ,
∴ 2S = 1(5 10 7 ) 4 122a a ,则 a= 9
4
·······································································10 分
根据 1
9( ,0)4P ,M( 5 2,2 3
)求出直线 1PM 的解析式为 8 63y x ,··········································· 11 分
若点 P 在对称轴的右侧,则直线 2P M 的解析式为 8 22
3 3y x .···············································12 分
解法二:过点 M 作直线交 x 轴于 1P ,易求四边形 AECD 的面积为 28,四边形 ABCD 的面积为 20,由“四边形
AECD 的面积分为 3∶4”可知直线 1PM 必交在线段 CD 上,······························································8 分
若 P 在对称轴的左侧,
由△ 1MKQ ∽△ 1MFP 得,S△MKQ1∶S△MFP1=25:1,···································································· 9 分
又∵S△MKQ1+12-S△MFP1=14,∴S△MFP1= 1
12
,则 1
1
4FP ,
∴ 1
9( ,0)4P ,根据 M( 5 2,2 3
),求出直线 1PM 的解析式为 8 63y x ,······································ 11 分
若点 P 在对称轴的右侧,则直线 2P M 的解析式为 8 22
3 3y x .···············································12 分