西南师大附中 2008-2009 学年度下期期末考试
初二数学试题
(总分:150 分 考试时间:120 分钟)
一、选择题(每小题 4 分,共 40 分)
1. 在 229 2 3 3.14 07
, , , , , 这六个实数中,无理数的个数是( )
A.4 个 B.3 个 C.2 个 D.1 个
2. 下列计算正确的是( )
A. 5 3 2 B. 8 2 4
C. 27 3 3 D. (1 2)(1 2) 1
3. 已知 Rt△ABC 中, 90C ,BC = 8, 4sin 5A ,则 AC = ( )
A.6 B.8 C.10 D. 32
3
4. 如图,小正方形的边长均为 1,则下列图中三角形(阴影部分)与△ABC 相似的是( )
5. 如图,设 M、N 分别为直角梯形 ABCD 两腰 AD、CB 的中点,
DE⊥AB 于点 E,将△ADE 沿 DE 翻折,M 与 N 恰好重合,则
AE∶BE 等于( )
A.2∶1 B.1∶2
C.3∶2 D.2∶3
6. 关于 x 的方程 2 2 (2 1) 1 0k x k x 有实数根,则下列结论正确的是( )
A.当 1
2k 时方程两根互为相反数 B.当 1
4k 时方程有实数根
C.当 1k 时方程两根互为倒数 D.当 k = 0 时方程的根是 x = – 1
7. 已知实数 x、y 满足 2 2 2 2 2 2( )( 1) 2x y x y x y ,则 的值为( )
A.1 B.2 C.– 2 或 1 D.2 或 – 1
8.已知 22y x 的图象是抛物线,若抛物线不动,将 x 轴、y 轴分别向上、向右平移 2 个单位,在新坐标
C
BA
D
E
M N
(第 5 题图)
A B C D(第 4 题图)
x
y
O
P
A B
Q
(第 9 题图)
A
B CD
E
(第 10 题图)
1 m
2 m 9.6 m
2 m
墙
(第 16 题图)
1 m
2 m 9.6 m
2 m
墙
(第 14 题图)
系下,所得抛物线解析式为( )
A. 22( 2) 2y x B. 22( 2) 2y x
C. 22( 2) 2y x D. 22( 2) 2y x
9. 如图,△OAP、△ABQ 均是等腰直角三角形,点 P、Q 在函数 4 ( 0)y xx
的图象上,直角顶点 A、B
均在 x 轴上,则点 B 的坐标为( )
A.( 2 1 ,0) B.( 5 1 ,0)
C.(3,0) D.( 5 1 ,0)
10. 如图,已知 AD 为等腰三角形 ABC 底边上的高,且 4tan 3B ,AC 上有一点 E,满足 AE∶EC = 2∶
3,那么 tan ADE 的值是( )
A. 3
5 B. 2
3 C. 1
2 D. 1
3
二、填空题(每小题 3 分,共 30 分)
11. 方程 2 2 0x x 的解为_________________.
12. 已知 为锐角,若 1sin cos3
,则 _________________.
13. 已知 22 1( 2 ) m my m m x 是反比例函数,则 m = _________________.
14. 在实数范围内定义一种运算“*”,其规则为 2 2a b a b ,根据这个规则,方程 ( 2) 5 0x 的解为
_________________.
15. 如图是一个二次函数当 4 0x 的图象,则此时函数 y 的取值范围是_________________.
16. 小亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立 1m 长的标杆测得其影长为 2 m,
同时旗杆的投影一部分在地面上,另一部分在某建筑物的墙上,分别测得其长度为 9.6 m 和 2 m,则
学校旗杆的高度为_________________m.
x
y
O
(第 15 题图)
– 4
– 2
4
17. 一个三角形两边长为 3 和 4,若第三边长是方程 2 8 15 0x x 的一个根,则这个三角形的形状为
_________________.
18. 已知开口向下的抛物线过 A(– 1,0),B(3,0)两点,与 y 轴交于 C,且 3 2BC ,则这条抛物线
的解析式为_________________.
19. 如图,□ABCD 中,E 为 CD 上一点,DE∶CE = 2∶3,连结 AE、BE、BD,且 AE、BD 交于点 F,则
S△DEF∶S△EBF∶S△ABF = _________________.
20. 如图,二次函数 2y ax bx c 的图象经过点(– 1,2)和(1,0),且与 y 轴交于负半轴,给出以下
四个结论:① abc < 0;② 2a + b > 0;③ a + c = 1;④ a > 1.其中正确结论的序号是
_________________.
A B
CD E
F
(第 19 题图)
x
y
O
(第 20 题图)
西南师大附中 2007—2008 学年度下期期末考试
初二数学试题
一、选择题(每小题 4 分,共 40 分)
题号 1 2 3 4 5 6 7 8 9 10
选项
二、填空题(每小题 3 分,共 30 分)
11. 12. 13. 14.
15. 16. 17. 18.
19. 20.
三、解答题(共 80 分)
21. (6 分) (1) 计算: 0 11 1 2( ) ( ) | tan30 3 |2 3 3
(6 分) (2) 解方程: 2 13 02x x
22. (10 分) 已知抛物线 2y ax bx c 的图象如图所示.
(1) 抛物线的解析式为____________________.
(2) 抛物线的顶点坐标为______________,且 y 有最________
x
y
O
(第 22 题图)
– 1
2
4
(填“大”或“小”)值.
(3) 当 x _____________时,y 随 x 的增大而减小.
(4) 根据图象可知,使不等式 2 0ax bx c 成立的 x 的取值范围是______________________.
23. (8 分) 如图,在△ABC 中, 430 sin 105B C AC , , ,求 AB 的长.
24. (10 分) 如图,反比例函数 ky x
的图象与一次函数 y mx b 的图象交于 A(1,3),B(n,– 1)
两点.
(1) 求反比例函数与一次函数的解析式;
(2) 根据图象,直接写出使反比例函数的值大于一次函数的值的 x 的取值范围.
A
B C
(第 23 题图)
x
y
O
(第 24 题图)
B
A
25. (10 分) 西瓜经营户以 2 元/千克的价格购进一批小型西瓜,以 3 元/千克的价格出售,每天可售出 200
千克.为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价 0.1 元/千克,每天可多
售出 40 千克,另外,每天的房租等固定成本共 24 元,该经营户要想每天盈利 200 元,应将每千克小
型西瓜的售价降低多少元?
26. (10 分) 如图,在等腰直角三角形 ABC 中, 90 4BAC AB AC , ,点 D 在线段 BC 上运动(不
与 B、C 重合),过 D 作 45ADE ,交 AC 于 E.
(1) 求证:△ABD∽△DCE;
(2) 设 BD = x,AE = y,求 y 与 x 之间的函数关系式,并写出自变量的取值范围.
B C
A
D
E
(第 26 题图)
(10 分) 如图,甲、乙两辆大型货车同时从 A 地出发驶往 P 市.甲车沿一条公路向北偏东 53 方向行
驶,直达 P 市,其速度为 30 千米/小时.乙车先沿一条公路向正东方向行驶 1 小时到达 B 地,卸下部
分货物(卸货的时间不计),再沿一条北偏东 37 方向的公路驶往 P 市,其速度始终为 35 千米/小时.
(3) 求 AP 间的距离.
(4) 已知在 P 市新建的移动通信接收发射塔,其信号覆盖面积只可达 P 市周围方圆 50 千米的区域(包
括边缘地带),除此以外,该地区无其他发射塔,问甲、乙两司机至少经过多少小时可以互相正
常通话?
( 3 4 3 4sin37 cos53 cos37 sin53 tan37 tan535 5 4 3
, , , )
53 37
(第 27 题图)
27. (10 分) 如图,抛物线 2y ax bx c 与 x 轴交于 A、B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C,
这条抛物线的顶点是 M(1,– 4),且过点(4,5).
(1) 求这条抛物线的解析式;
(2) P 为线段 BM 上的一点,过点 P 向 x 轴引垂线,垂足为 Q,若点 P 在线段 BM 上运动(点 P 不与
点 B、M 重合),四边形 PQAC 的面积能否等于 7?如果能,求出点 P 的坐标;如果不能,请说
明理由.
(3) 设直线 m 是抛物线的对称轴,是否存在直线 m 上的点 N,使以 N、B、C 为顶点的三角形是直角
三角形?若存在,请求出点 N 的坐标;若不存在,请说明理由.
西南师大附中 2007—2008 学年度下期期末考试
初二数学试题参考答案
O x
y
A
Q
B
P
M
C
(第 28 题图)
一、选择题(每小题 4 分,共 40 分)
题号 1 2 3 4 5 6 7 8 9 10
选项 C C A B A B A B D C
二、填空题(每小题 3 分,共 30 分)
11.x1 = 0,x2 = – 2 12. 2 2
3 13.– 1
14.x1 = 3,x2 = – 7 15. 2 4y 16.6.8
17.等腰或直角三角形 18. 2 2 3y x x
19.4∶10∶25 20.②③④
三、解答题(共 80 分)
21.(1) 解:原式 2 3 31 3 | 3 |3 3
································································ 3 分
2 31 2 3 3
··········································································· 5 分
4 31 3
··················································································· 6 分
(2) 解:a = 1,b = 3,c = 1
2
∵ 2 14 9 4 1 72b ac
∴ 3 7
2x ·················································································5 分
∴ 1 2
3 7 3 7
2 2x x , ·····························································6 分
22.(1) 21 3 22 2y x x
(2) ( 3 25
2 8
, ) 大
(3) 3
2
(4) 1 4x x 或 (每空 2 分)
23.解:过 A 作 AD⊥BC 于 D··············································································· 1 分
∵ AD⊥BC, 4sin 5C ,AC = 10 A
B C
(第 23 题图)
D
∴ sin 8AD AC C ································ 5 分
∵ 30B
∴ AB = 2AD = 16·······································8 分
24.解:(1) ∵ A(1,3),B(n,– 1)在反比例函数 ky x
的图象上
∴
3
1
k
k
n
···················································································· 2 分
∴ 3 3k n , ··············································································· 3 分
∵ A(1,3),B(n,– 1)在一次函数 y mx b 的图象上
∴ 3
1 3
m b
m b
··············································································4 分
1
2
m
b
解得 ···················································································· 5 分
∴ 反比例函数与一次函数的解析式分别为 3 2y y xx
, ······················· 6 分
(2) 3 0 1x x 或 ············································································· 10 分
25.解:设每千克小型西瓜的售价降低 x 元,由题意··················································1 分
(3 2)(200 40 ) 24 2000.1
xx ····························································· 5 分
250 25 3 0x x
(5 1)(10 3) 0x x
∴ x1 = 0.2,x2 = 0.3···············································································9 分
答:应将每千克小型西瓜的售价降低 0.2 元或 0.3 元.········································ 10 分
26.(1) 证明:∵ 90BAC ,AB = AC
∴ 45B C ·········································································· 1 分
∵ 2 3 180C
∴ 2 3 135 ···················2 分
∵ 1 2 180 45ADE ADE ,
∴ 1 2 135 ··················· 3 分
∴ 1 3 ····························4 分
∴ △ABD∽△DCE··················5 分
(2) 解:∵ AB = AC = 4
∴ 4 2BC ···················································································· 6 分
∵ BD = x,AE = y
∴ 4 2 4CD x CE y , ································································7 分
∵ △ABD∽△DCE,
B C
A
D
E
(第 26 题图)
1 2
3
∴
42
AB BD x
DC CE yx
4即
4 ··························································9 分
∴ 21 2 4 (0 4 2)4y x x x ······················································ 10 分
27.解:(1) 过 P 作 PD⊥AB 延长线于 D································································· 1 分
由题意知:AB = 35 千米
37 53PAD PBD ,
设 PD = x 千米
∵ 在 Rt△PAD 中, tan37 PD
AD
∴ 4
tan37 3
xAD x ······················ 2 分
∵在 Rt△PBD 中, tan53 PD
BD
∴ 3
tan53 4
PDBD x ··········································································3 分
∵ AD – BD = AB 即 4 3 353 4x x
∴ x = 60,即 AD = 60 千米··································································4 分
∴在 Rt△PAD 中, sin37 PD
AP
∴ 60 100sin37 0.6
PDAP
千米·····························································5 分
(2) ∵在 Rt△PBD 中, sin53 PD
BD
∴ 60 754sin53
3
PDPB
千米····························································· 6 分
设甲、乙两司机分别出发 t1、t2 小时后手机有信号
∴ 1
50 100 50 5
30 30 3
PAt 小时························································ 7 分
2
50 35 75 50 60 12
35 35 35 7
PB ABt 小时···································· 8 分
∵ 1 2
5 35 12 36
3 21 7 21t t ································································ 9 分
∴ 甲、乙两司机至少经过 12
7
小时可以正常通话.·································10 分
28.解:(1) 设 2( 1) 4y a x 代入(4,5)得 a = 1,∴ 2 2 3y x x ························2 分
5337
(第 27 题图)
D
····································································································8 分
③若∠C = Rt∠,则 2 2 2NB BC NC ,∴ 2 24 18 ( 3) 1n n ∴ 4n
····································································································9 分
综上,存在这样的点 N,其坐标为 3 17(1 )2
, 或 3 17(1 )2
, 或 (1 2), 或(1, 4 )
····································································································· 10 分