重庆西南师大附中 2009—2010 学年度上期期末考试
初二数学试题
(总分:150 分 考试时间:120 分钟)
一、选择题(每小题 4 分,共 40 分)
1. 分式
2
x
x
有意义则 x 的范围是( )
A.x ≠ 2 B.x ≠ – 2 C.x ≠ 0 且 x ≠ – 2 D. 2x
2. 以下五家银行行标中,既是中心对称图形又是轴对称图形的有 ( )
A.1 个 B.2 个 C.3 个 D.4 个
3. 内角和与外角和相等的多边形是( )
A.三角形 B.四边形 C.五边形 D.六边形
4. 下列命题中的真命题是( )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.有一组对边和一组对角分别相等的四边形是平行四边形
C.两组对角分别相等的四边形是平行四边形
D.两条对角线互相垂直且相等的四边形是正方形
5. 若点 M (a,b)在第四象限,则点 N (– a,–b + 2)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限.
6. 如图,已知 E、F、G 分别是△ABC 各边的中点,△EBF 的面积为 2,则△ABC 的面积为
( )
A.2 B.4 C.6 D.8
G
F
E
C
B
A
(6 题图) (7 题图)
7. 如图,在矩形 ABCD 中,O 是 BC 的中点,∠AOD = 90°,若矩形 ABCD 的周长为 30cm,
则 AB 的长为( )
A.5 cm B.10 cm C.15 cm D.7.5 cm
8. 函数 my x
与 ( 0)y mx m m 在同一平面直角坐标系中的图像可能是( )
9. 如图,E 为矩形 ABCD 的边 CD 上的一点, AB=AE=4,BC=2,则∠BEC 是( )
A.15° B.30° C.60° D.75°
(9 题图) (10 题图)
10. 如图所示,等腰直角三角形 ABC 位于第一象限,AB = AC = 2,直角顶点 A 在直线 y = x
上,其中 A 点的横坐标为 1,且两条直角边 AB,AC 分别平行于 x 轴,y 轴,若双曲线
( 0)ky kx
与△ABC 有交点,则 k 的取值范围是( )
A.1 < k < 2 B.1 ≤ k ≤ 3 C.1 ≤ k ≤ 4 D.1 ≤ k < 4
二、填空题(每小题 3 分,共 30 分)
11. P(3,– 4)关于原点对称的点的坐标是___________.
12. 菱形的周长是 8 cm,则菱形的一边长是___________.
13. 用任意两个全等的直角三角形拼下列图形:
①平行四边形 ②矩形 ③菱形 ④正方形
⑤等腰三角形 ⑥等边三角形
其中一定能够拼成的图形是___________(只填序号).
14. 如图,正方形 A 的面积是___________.
15. 已知直线 6y x 与 x 轴、y 轴围成一个三角形,则这个三角形面积为___________.
(14 题图)
A B
CD E
16. 如图,梯形 ABCD 中,DC//AB,∠D = 90 ,AD = 4 cm,AC = 5 cm, 218 cmABCDS 梯形 ,
那么 AB = ___________.
D C
BA
(16 题图) (17 题图) (18 题图)
17. 如图,已知函数 y = x + b 和 y = ax + 3 的图像交点为 P,则不等式 x + b > ax + 3
的解集为___________.
18. 如图,将边长为 1 的正方形 ABCD 绕 A 点按逆时针方向旋转 30°,至正方形 AB′C′D′,
则旋转前后正方形重叠部分的面积是___________.
19. 如图,梯形 ABCD 中,△ABP 的面积为 20 平方厘米,△CDQ 的面积为 35 平方厘米,则
阴影四边形的面积等于___________平方厘米.
20. 下图表示甲、乙两名选手在一次自行车越野赛中,路程 y(千 米)随时间 x(分)变
化的图象.下面几个结论:
①比赛开始 24 分钟时,两人第一次相遇.
②这次比赛全程是 10 千米.
③比赛开始 38 分钟时,两人第二次相遇.
正确的结论为 .
三、解答题(21~24 每题 5 分,25 题 10 分,共 30 分)
(19 题图) x 分
y 千米
B
A
C D
5
33O
6
7
15 43 48
(20 题图)
21.
2
2
x y y
y x x
22.
2 2
2 24 4 (4 )2
x xy y x yx y
23. 2 1 22 1x
24. 1 132 2
x
x x
25. 已知直线 y kx b 与直线 2 3y x 交于 y 轴上同一点,且过直线 3y x 上的点(m,
6),求其解析式.
四、解答题(每题 10 分,共 50 分)
26. 如图,平行四边形 ABCD 中,EF 垂直平分 AC,与边 AD、BC 分别相交于点 E、F.试说明
四边形 AECF 是菱形.
27. 如图,已知一次函数 y = kx + b 的图像与反比例函数 8y x
的图像交于 A,B 两点,
且点 A 的横坐标和点 B 的纵坐标都是 – 2,求:
(1) 一次函数的解析式;
(2) △AOB 的面积;
(3) 直接写出一次函数的函数值大于反比例函数的函数值时 x 的取值范围.
28. 正方形 ABCD 中,E 为 AB 上一点,F 为 CB 延长线上一点 ,且∠EFB = 45 .
(1) 求证:AF = CE;
(2) 你认为 AF 与 CE 有怎样的位置..关系?说明理由.
F
E
D
CB
A
29. 如图,已知 AB∥DC,AE⊥DC,AE = 12,BD = 15,AC = 20,求梯形 ABCD 的面积.
30. 我市某乡 A,B 两村盛产柑橘,A村有柑橘 200 t,B 村有柑橘 300 t.现将这些柑橘运
到 C,D 两个冷藏仓库,已知 C 仓库可储存 240 t,D 仓库可储存 260 t;从 A 村运往
C,D 两处的费用分别为每吨 20 元和 25 元,从 B 村运往 C,D 两处的费用分别为每吨
15 元和 18 元,设从 A 村运往 C 仓库的柑橘重量为 x t,A,B两村运往两仓库的柑橘
运输费用分别为 yA 元和 yB 元.
(1) 求出 yB,yA 与 x 之间的函数关系式;
yA = ________________________,yB = ________________________.
(2) 试讨论 A,B 两村中,哪个村的运费较少;
(3) 考虑到 B 村的经济承受能力,B 村的柑橘运费不得超过 4830 元.在这种情况下,请
问怎样调运,才能使两村运费之和最小?求出这个最小值.
(命题人:赖 宁 审题人:卓忠越)
西南师大附中 2009—2010 学年度上期期末考试
初二数学试题参考答案
一、选择题(每小题 4 分,共 40 分)
题号 1 2 3 4 5 6 7 8 9 10
答案 A B B C B D A C D C
二、填空题(每小题 3 分,共 30 分)
11.(– 3,4) 12.2 cm 13.①②⑤ 14.36 15.18
16.6 cm 17.x > 1 18. 3
3
19.55 20.①③
三、解答题(21~24 每题 5 分,25 题 10 分,共 30 分)
21.解:原式
2 2
2
x y x
y x y
········ 3 分 22.解:原式
2(2 ) 1
2 (2 )(2 )
x y
x y x y x y
···· 3 分
x ···················· 5 分 1
2x y
······························5 分
23.解: 2 32 1x
···················· 1 分 24.解:1 3( 2) 1x x ·························2 分
2 6 3x ···················· 2 分 1 3 6 1x x
5
6x ························· 4 分 2x ······························· 4 分
经检验 5
6x 是原方程的解·····5 分 经检验 2x 是原方程的增根,原方程无解···· 5 分
25.解:由题意 y kx b 与 2 3y x 交于(0,– 3),与 3y x 交于(– 2,6)······5 分
∴ 3
6 2
b
k b
······················································································6 分
解得
9
2
3
k
b
························································································9 分
∴ 直线的解析式为 9 32y x ····························································· 10 分
四、解答题(每题 10 分,共 50 分)
26.解:∵ EF 垂直平分 AC
∴ AE = EC,AF = FC·················2 分
又 AO = OC
∴∠1 =∠2,∠3 =∠4··············· 4 分
又□ABCD
∴ AD∥BC··························································································· 5 分
∴ ∠1 =∠4 =∠3·················································································6 分
∴ AF = AE··························································································7 分
∴ AE = EC = CF = FA···········································································9 分
1
2
3
4
∴ 四边形 AECF 是菱形········································································· 10 分
27.解:(1) 由题意 A(– 2,4),B(4,– 2)··················································· 1 分
∵ 一次函数过 A、B 两点
解得 1
2
k
b
·················································································· 3 分
∴ 4 2
2 4
k b
k b
··············································································2 分
∴ 一次函数的解析式为 2y x ····················································· 4 分
(2) 设直线 AB 与 y 轴交于 C,则 C(0,2)··············································· 5 分
∴ AOB AOC BOCS S S
1 1| | | |2 2A BOC x OC x
1 12 2 2 42 2
6 ··················································································8 分
(3) 2 0 4x x 或 ··········································································10 分
28.(1) 证明:∵ 正方形 ABCD,∴ AB = BC, 90ABC
∴ 90EBF ············································································1 分
∵ 45EFB
∴ 45EFB FEB ································································· 2 分
∴ EB = EF··················································································3 分
在△CBE 和△ABF 中,
90
BC AB
EB EF
EBC FBA
∴△CBE≌△ABF············································································4 分
∴ AF = CE··················································································5 分
(2) AF⊥CE································································································ 6 分
证明如下:
延长 CE 交 AF 于 G,由(1) 得△CBE≌△ABF
∴ ∠BEC =∠AFB·······································7 分
又 90ABC
F
E
D
CB
A
G
∴ 90BEC ECB ····························· 8 分
∴ 90AFB ECB ······························9 分
又 180AFB ECB CGE
∴ 90CGF
∴ AF⊥CE··························································································· 10 分
29.解:过 A 作 AF∥BD 交 CD 延长线于 F······························································· 1 分
∵ AB∥DC,AF∥BD
∴ AF = BD,AB = FD············································································ 3 分
∴ AB + CD = FD + CD = FC···································································4 分
∵AE⊥DC,AE = 12,BD = 15,AC = 20
∴ 2 2 9EF AF AE ········································································6 分
2 2 16CE AC AE ·······································································7 分
∴ FC = EF + CE = 25···········································································8 分
∴ 1 1( ) 25 12 1502 2ABCDS AB CD AE 梯形 ····································· 10 分
30.解:(1) yA= –5x + 5000(0 ≤ x ≤ 200),yB = 3x + 4680(0 ≤ x ≤ 200).··2 分
(2) 当 yA = yB 时,–5x + 5000 = 3x + 4680,x = 40;······························ 3 分
当 yA > yB 时,–5x+5000 > 3x + 4680,x < 40;································· 4 分
当 yA < yB 时,–5x+5000 < 3x + 4680,x > 40.································· 5 分
∴当 x = 40 时,yA = yB 即两村运费相等;当 0 ≤ x < 40 时,yA > yB 即 B 村运
费较少;当 40 < x ≤ 200 时,yA < yB 即 A 村费用较少.·····················6 分
(3) 由 yB ≤ 4830 得 3x + 4580 ≤ 4830.
∴ x ≤ 50.·················································································7 分
设两村运费之和为 y,∴ y = yA + yB,
即:y = –2x + 9680.··································································· 8 分
又∵0 ≤ x ≤ 50 时,y 随 x 增大而减小,
∴当 x = 50 时,y 有最小值,y 最小值 = 9580(元).·······························9 分
答:当 A 村调往 C 仓库的柑橘重为 50 t,调运 D 仓库为 150 t,B 村调往 C 仓库为 190 t,
调往 D 仓库 110 t 的时候,两村的运费之和最小,最小费用为 9580 元.···················· 10 分