重庆西南师大附中09-10学年八上数学期末考试
加入VIP免费下载

重庆西南师大附中09-10学年八上数学期末考试

ID:629975

大小:884 KB

页数:9页

时间:2021-03-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
重庆西南师大附中 2009—2010 学年度上期期末考试 初二数学试题 (总分:150 分 考试时间:120 分钟) 一、选择题(每小题 4 分,共 40 分) 1. 分式 2 x x  有意义则 x 的范围是( ) A.x ≠ 2 B.x ≠ – 2 C.x ≠ 0 且 x ≠ – 2 D. 2x   2. 以下五家银行行标中,既是中心对称图形又是轴对称图形的有 ( ) A.1 个 B.2 个 C.3 个 D.4 个 3. 内角和与外角和相等的多边形是( ) A.三角形 B.四边形 C.五边形 D.六边形 4. 下列命题中的真命题是( ) A.一组对边平行,另一组对边相等的四边形是平行四边形 B.有一组对边和一组对角分别相等的四边形是平行四边形 C.两组对角分别相等的四边形是平行四边形 D.两条对角线互相垂直且相等的四边形是正方形 5. 若点 M (a,b)在第四象限,则点 N (– a,–b + 2)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限. 6. 如图,已知 E、F、G 分别是△ABC 各边的中点,△EBF 的面积为 2,则△ABC 的面积为 ( ) A.2 B.4 C.6 D.8 G F E C B A (6 题图) (7 题图) 7. 如图,在矩形 ABCD 中,O 是 BC 的中点,∠AOD = 90°,若矩形 ABCD 的周长为 30cm, 则 AB 的长为( ) A.5 cm B.10 cm C.15 cm D.7.5 cm 8. 函数 my x  与 ( 0)y mx m m   在同一平面直角坐标系中的图像可能是( ) 9. 如图,E 为矩形 ABCD 的边 CD 上的一点, AB=AE=4,BC=2,则∠BEC 是( ) A.15° B.30° C.60° D.75° (9 题图) (10 题图) 10. 如图所示,等腰直角三角形 ABC 位于第一象限,AB = AC = 2,直角顶点 A 在直线 y = x 上,其中 A 点的横坐标为 1,且两条直角边 AB,AC 分别平行于 x 轴,y 轴,若双曲线 ( 0)ky kx   与△ABC 有交点,则 k 的取值范围是( ) A.1 < k < 2 B.1 ≤ k ≤ 3 C.1 ≤ k ≤ 4 D.1 ≤ k < 4 二、填空题(每小题 3 分,共 30 分) 11. P(3,– 4)关于原点对称的点的坐标是___________. 12. 菱形的周长是 8 cm,则菱形的一边长是___________. 13. 用任意两个全等的直角三角形拼下列图形: ①平行四边形 ②矩形 ③菱形 ④正方形 ⑤等腰三角形 ⑥等边三角形 其中一定能够拼成的图形是___________(只填序号). 14. 如图,正方形 A 的面积是___________. 15. 已知直线 6y x  与 x 轴、y 轴围成一个三角形,则这个三角形面积为___________. (14 题图) A B CD E 16. 如图,梯形 ABCD 中,DC//AB,∠D = 90  ,AD = 4 cm,AC = 5 cm, 218 cmABCDS 梯形 , 那么 AB = ___________. D C BA (16 题图) (17 题图) (18 题图) 17. 如图,已知函数 y = x + b 和 y = ax + 3 的图像交点为 P,则不等式 x + b > ax + 3 的解集为___________. 18. 如图,将边长为 1 的正方形 ABCD 绕 A 点按逆时针方向旋转 30°,至正方形 AB′C′D′, 则旋转前后正方形重叠部分的面积是___________. 19. 如图,梯形 ABCD 中,△ABP 的面积为 20 平方厘米,△CDQ 的面积为 35 平方厘米,则 阴影四边形的面积等于___________平方厘米. 20. 下图表示甲、乙两名选手在一次自行车越野赛中,路程 y(千 米)随时间 x(分)变 化的图象.下面几个结论: ①比赛开始 24 分钟时,两人第一次相遇. ②这次比赛全程是 10 千米. ③比赛开始 38 分钟时,两人第二次相遇. 正确的结论为 . 三、解答题(21~24 每题 5 分,25 题 10 分,共 30 分) (19 题图) x 分 y 千米 B A C D 5 33O 6 7 15 43 48 (20 题图) 21. 2 2 x y y y x x             22. 2 2 2 24 4 (4 )2 x xy y x yx y     23. 2 1 22 1x   24. 1 132 2 x x x    25. 已知直线 y kx b  与直线 2 3y x  交于 y 轴上同一点,且过直线 3y x  上的点(m, 6),求其解析式. 四、解答题(每题 10 分,共 50 分) 26. 如图,平行四边形 ABCD 中,EF 垂直平分 AC,与边 AD、BC 分别相交于点 E、F.试说明 四边形 AECF 是菱形. 27. 如图,已知一次函数 y = kx + b 的图像与反比例函数 8y x   的图像交于 A,B 两点, 且点 A 的横坐标和点 B 的纵坐标都是 – 2,求: (1) 一次函数的解析式; (2) △AOB 的面积; (3) 直接写出一次函数的函数值大于反比例函数的函数值时 x 的取值范围. 28. 正方形 ABCD 中,E 为 AB 上一点,F 为 CB 延长线上一点 ,且∠EFB = 45 . (1) 求证:AF = CE; (2) 你认为 AF 与 CE 有怎样的位置..关系?说明理由. F E D CB A 29. 如图,已知 AB∥DC,AE⊥DC,AE = 12,BD = 15,AC = 20,求梯形 ABCD 的面积. 30. 我市某乡 A,B 两村盛产柑橘,A村有柑橘 200 t,B 村有柑橘 300 t.现将这些柑橘运 到 C,D 两个冷藏仓库,已知 C 仓库可储存 240 t,D 仓库可储存 260 t;从 A 村运往 C,D 两处的费用分别为每吨 20 元和 25 元,从 B 村运往 C,D 两处的费用分别为每吨 15 元和 18 元,设从 A 村运往 C 仓库的柑橘重量为 x t,A,B两村运往两仓库的柑橘 运输费用分别为 yA 元和 yB 元. (1) 求出 yB,yA 与 x 之间的函数关系式; yA = ________________________,yB = ________________________. (2) 试讨论 A,B 两村中,哪个村的运费较少; (3) 考虑到 B 村的经济承受能力,B 村的柑橘运费不得超过 4830 元.在这种情况下,请 问怎样调运,才能使两村运费之和最小?求出这个最小值. (命题人:赖 宁 审题人:卓忠越) 西南师大附中 2009—2010 学年度上期期末考试 初二数学试题参考答案 一、选择题(每小题 4 分,共 40 分) 题号 1 2 3 4 5 6 7 8 9 10 答案 A B B C B D A C D C 二、填空题(每小题 3 分,共 30 分) 11.(– 3,4) 12.2 cm 13.①②⑤ 14.36 15.18 16.6 cm 17.x > 1 18. 3 3 19.55 20.①③ 三、解答题(21~24 每题 5 分,25 题 10 分,共 30 分) 21.解:原式 2 2 2 x y x y x y     ········ 3 分 22.解:原式 2(2 ) 1 2 (2 )(2 ) x y x y x y x y     ···· 3 分 x  ···················· 5 分 1 2x y   ······························5 分 23.解: 2 32 1x  ···················· 1 分 24.解:1 3( 2) 1x x    ·························2 分 2 6 3x  ···················· 2 分 1 3 6 1x x    5 6x  ························· 4 分 2x  ······························· 4 分 经检验 5 6x  是原方程的解·····5 分 经检验 2x  是原方程的增根,原方程无解···· 5 分 25.解:由题意 y kx b  与 2 3y x  交于(0,– 3),与 3y x  交于(– 2,6)······5 分 ∴ 3 6 2 b k b       ······················································································6 分 解得 9 2 3 k b       ························································································9 分 ∴ 直线的解析式为 9 32y x   ····························································· 10 分 四、解答题(每题 10 分,共 50 分) 26.解:∵ EF 垂直平分 AC ∴ AE = EC,AF = FC·················2 分 又 AO = OC ∴∠1 =∠2,∠3 =∠4··············· 4 分 又□ABCD ∴ AD∥BC··························································································· 5 分 ∴ ∠1 =∠4 =∠3·················································································6 分 ∴ AF = AE··························································································7 分 ∴ AE = EC = CF = FA···········································································9 分 1 2 3 4 ∴ 四边形 AECF 是菱形········································································· 10 分 27.解:(1) 由题意 A(– 2,4),B(4,– 2)··················································· 1 分 ∵ 一次函数过 A、B 两点 解得 1 2 k b     ·················································································· 3 分 ∴ 4 2 2 4 k b k b       ··············································································2 分 ∴ 一次函数的解析式为 2y x   ····················································· 4 分 (2) 设直线 AB 与 y 轴交于 C,则 C(0,2)··············································· 5 分 ∴ AOB AOC BOCS S S    1 1| | | |2 2A BOC x OC x   1 12 2 2 42 2       6 ··················································································8 分 (3) 2 0 4x x   或 ··········································································10 分 28.(1) 证明:∵ 正方形 ABCD,∴ AB = BC, 90ABC   ∴ 90EBF   ············································································1 分 ∵ 45EFB   ∴ 45EFB FEB     ································································· 2 分 ∴ EB = EF··················································································3 分 在△CBE 和△ABF 中, 90 BC AB EB EF EBC FBA         ∴△CBE≌△ABF············································································4 分 ∴ AF = CE··················································································5 分 (2) AF⊥CE································································································ 6 分 证明如下: 延长 CE 交 AF 于 G,由(1) 得△CBE≌△ABF ∴ ∠BEC =∠AFB·······································7 分 又 90ABC   F E D CB A G ∴ 90BEC ECB     ····························· 8 分 ∴ 90AFB ECB     ······························9 分 又 180AFB ECB CGE       ∴ 90CGF   ∴ AF⊥CE··························································································· 10 分 29.解:过 A 作 AF∥BD 交 CD 延长线于 F······························································· 1 分 ∵ AB∥DC,AF∥BD ∴ AF = BD,AB = FD············································································ 3 分 ∴ AB + CD = FD + CD = FC···································································4 分 ∵AE⊥DC,AE = 12,BD = 15,AC = 20 ∴ 2 2 9EF AF AE   ········································································6 分 2 2 16CE AC AE   ·······································································7 分 ∴ FC = EF + CE = 25···········································································8 分 ∴ 1 1( ) 25 12 1502 2ABCDS AB CD AE       梯形 ····································· 10 分 30.解:(1) yA= –5x + 5000(0 ≤ x ≤ 200),yB = 3x + 4680(0 ≤ x ≤ 200).··2 分 (2) 当 yA = yB 时,–5x + 5000 = 3x + 4680,x = 40;······························ 3 分 当 yA > yB 时,–5x+5000 > 3x + 4680,x < 40;································· 4 分 当 yA < yB 时,–5x+5000 < 3x + 4680,x > 40.································· 5 分 ∴当 x = 40 时,yA = yB 即两村运费相等;当 0 ≤ x < 40 时,yA > yB 即 B 村运 费较少;当 40 < x ≤ 200 时,yA < yB 即 A 村费用较少.·····················6 分 (3) 由 yB ≤ 4830 得 3x + 4580 ≤ 4830. ∴ x ≤ 50.·················································································7 分 设两村运费之和为 y,∴ y = yA + yB, 即:y = –2x + 9680.··································································· 8 分 又∵0 ≤ x ≤ 50 时,y 随 x 增大而减小, ∴当 x = 50 时,y 有最小值,y 最小值 = 9580(元).·······························9 分 答:当 A 村调往 C 仓库的柑橘重为 50 t,调运 D 仓库为 150 t,B 村调往 C 仓库为 190 t, 调往 D 仓库 110 t 的时候,两村的运费之和最小,最小费用为 9580 元.···················· 10 分

资料: 4.5万

进入主页

人气:

10000+的老师在这里下载备课资料