圆椎的体积与单元检测
☆知识要点:
(1) 圆锥的特征:
圆锥有一个底面和一个侧面,它的底面是个圆,侧面是一个曲面.从圆锥的顶点
到底面圆心的距离叫圆锥的高,它只有一条高.
(2) 圆锥的体积计算公式:
圆锥的体积等于和它等底等高的圆柱体积的三分之一.用字母表示
在解题时不要忘掉 ”,还要注意只有在“等底等高”的情况下,圆锥的体积才等于
圆柱的体积的 。
计算圆锥形容器的容积时,也用体积公式进行计算.但体和容积是不同的概念,体积
是指物体所占空间的大小,而容积是指容器所能容纳物体的体积,虽然计算公式一样,
但要注意它们的区别.
计算圆锥形容器的容积时,也用体积公式进行计算.但体和容积是不同的概念,体积
是指物体所占空间的大小,而容积是指容器所能容纳物体的体积,虽然计算公式一样,
但要注意它们的区别.
例 1、 一个圆锥体的谷堆,底面周长 9.42 米,高 1.8 米,它的体积是多少立方米?
①求半径:9.42÷3.14÷2=1.5 米
②求体积: ×1.5×1.5×3×3.14×1.8=4.239(立方米)
答:这个谷堆的体积是 4.239 立方米.
例 2、 一个圆锥形容器,从量面量高为 15 厘米,底面半径 8 厘米,容器装满水,这
个容器可装水多少毫升?
×3.14×8×8×15=100.48(立方厘米)
=100. 48 毫升
答:这个容器可装 100.48 毫升.
从以上两题可以看出,有两个不同点,一是单位名称不同,二是测量方法不同,计算
体积时要从物体外部测量后计算,计算容积时,要从物体内部测量计算.
例 3、 一个圆锥形容器,可容水 122.46 毫升,已知底面直径是 6 厘米,高是多少厘
米?
分析:这是一道逆向思维的题,用方程解比较容易,根据公式,对号入座,即可解决.
解:设高为 x 厘米
答:高是 13 厘米.
例 4、把一个底面半径是 10 厘米,高 15 厘米的圆柱形钢件,熔铸成一个高是 0.6 米
的圆柱形钢件,这个圆锥的底面应是多少平方厘米?
分析:圆柱形钢件熔铸成圆锥形钢件,虽然形状发生变化,但体积大小没变,这叫等
积变形问题,解答这类问题,利用体积不变这个等量关系,用方程解.
解:设圆锥底面为 x 平方厘米
答:圆锥底面应是 235.5 平方厘米.
(3) 圆柱和圆锥的三种关系:
1 等底等高,体积不等.
圆锥体积等于圆柱的 ,圆柱体积是圆锥的 3
2 等底,等体积,高不等
圆锥的高是圆柱高的 3 倍,圆柱高是圆锥的
3 等高,等体积,高不等.
圆柱的底面积是圆锥底面积的
圆锥的底面积是圆柱的底面积的 3 倍.
利用上面关系,解决下面问题.
例如:等底等高的圆柱体和圆锥体体积之和是 12.56 立方厘米,圆柱体积是多
少?
分析:等底等高,圆柱体积等于圆锥体积的 3 倍.
12.56÷(3+1)×3=9.42(立方厘米)
也可以用对应思想去解决此题:
12.56÷(1+ )=9.42(立方厘米)
答:圆柱体积是 9.42 立方厘米.
☆基础练习:
填空:
1 等底等高的圆柱和圆锥,圆锥体积是圆柱体积的( ).
②一个圆锥高不变,底面积扩大 2 倍,圆锥体积扩大( )倍.
③把一个圆柱削成一个和它等底等高的圆锥,削去的体积是 64 立方厘米,圆锥体积
是( ).
④一个圆柱体的底面积是 25 平方厘米,高 12 厘米,它的体积是( ).
⑤一个圆柱体的底面积是 6.28 平方分米,高 3 分米,和这个圆柱体,等底,等高和
圆锥体的体积是( ).
⑥一个圆柱体和一个圆锥体的高和体积都相等,则圆柱体的底面是圆锥体底面的( ).
⑦一个圆柱削去 6 立方分米,正好削成一个与它等底等高的圆锥,这个圆柱的体积
是( ).
应用题
1 一个近似圆锥形砂堆,底面周长是 31.4 米,高 3 米,一辆汽车每次能运 8 立方
米,几次可以运完?(得数保留整数)
②一个圆柱形水桶,里面盛 48 立方分米的水,正好盛满,如果把一块与水桶等底等
高的圆锥形,放入水中,桶内还有多少水?
③一个圆锥形容堆,高 1.2 米,占地面积是 20 平方米,把这堆谷装进粮仓,正好占
这个粮仓容积的 ,这个粮仓的容积是多少?
④有 AB 两上容器,如图先把装满水,然后倒入 B 中,B 中水的深度是多少厘米?
⑤一个圆柱和一个圆锥底面积相等,圆柱高 3 分米,体积是 60 立方分米,比圆锥体
积大 20 立方分米,这个圆锥的高是多少分米?
☆医院诊断:
1 只有在等底,等高的情况下,圆柱体积才是圆锥的 .
2 因为圆柱体底面是圆,它的周长 12.56,只与直径和π有关,而与高无关,因此不能说一定
相等.
3 圆柱体的体积与底面积和高有关系,不能只与高有关.
4 此题,单位名称不统一,在审题时必须注意这个问题,另外用字母 V 表示体积时,得出的结
果不应写单位名称,字母只能表示一个数,而不能表示量.
⑤当圆柱和圆锥等底等高时,圆柱体积比圆锥大 2 倍,而不是 .
☆单元检测
一、基本概念
(1) 填空:
1 4.02 立方米=( )立方米( )立方分米
② 立方米=( )升
2 把圆柱体的侧面展开,可能得到一个( )形,也可能得到( )形.
④一个圆柱的底面直径和高都是 15 厘米,那么这个圆柱的侧面积是( ),表面积是( ),
体积是( ).
5 一堆小麦堆成圆锥形,底面周长是 18. 84 米,高 1.8 米,这堆小麦的体积是( ).
⑥底面积是 1 平方厘米,高是( )的圆锥形,体积是 24 立方厘米.
6 等底等高的圆柱体的体积是圆锥体体积是( )倍,也就是等底等高的圆锥体,体积是圆柱体
体积的( ).
7 高是 4 分米,底面积是( )平方分米的圆锥体,体积是 36 立方分米.
8 一个圆柱体比和它等底等高的圆锥体体积大 25 立方厘米,那么圆柱体和圆锥体体积的和是
( ).
9 ⑩把一个圆柱体的侧面展开,是一个正方形,如果圆柱体的高是 25.12 厘米,它的底面半径
是( ).
(二)判断正误,对的画"√"错的画"×".
1 圆柱的高有无数条 ( ).
2 圆锥的体积等于圆柱体积的 ( ).
3 一个圆柱高 12 厘米,与一个圆锥的体积相等,底面也相等,圆锥的高是 4 厘米 ( ).
4 圆柱体底面半径扩大 2 倍,高不变,圆柱体的侧面积就扩大 2 倍 ( ).
(三)选择正确答案填空:
一个圆柱形水池,底面直径是 8 米,深 2.5 米,求这个水池的占地面积的计算式是( ).
3 把一根圆柱体木材加工成一个等底等高的圆锥体,削去的部分是圆柱体的( ).
二、求下面各图形的体积(单位:厘米)
三、解决问题
4 一个圆柱形油桶,底面半径是 1.4 分米,高 5 分米,做这样一个油桶需要多少铁皮?
(得数保留一位小数).
5 一个圆柱形粮仓底面半径 3 米,高 3.5 米,每立方米小麦重 780 千克,这个粮仓装
多少千克小麦.
6 一个圆柱形水桶,桶深 5 分米,桶底的直径是 8 分米,把这个水桶盛满水,如果每
升水重 1 千克,这个桶中的水重多少千克?
7 一个圆柱形茶杯,底面直径是 4 厘米,高 10 厘米,把它装满水后,再倒入一个长
10 厘米,宽 8 厘米的长方形容器后,水面的高是多少厘米?(用方程解)