绝密★启用前 试卷类型:A
2014 年临沂市初中学生学业考试试题
数 学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共 8 页,满分 120 分,考试时间
120 分钟.答卷前,考生务必用 0.5 毫米黑色签字笔将自己的姓名、准考证号、座号填写在试
卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.
2.答题注意事项见答题卡,答在本试卷上不得分.
第Ⅰ卷(选择题 共 42 分)
一、选择题(本大题共 14 小题,每小题 3 分,共 42 分)在每小题所给出的四个选项中,
只有一项是符合题目要求的.
1.-3 的相反数是
(A)3. (B)-3. (C) 1
3
. (D) 1
3 .
2.根据世界贸易组织(W T O )秘书处初步统计数据,2013 年中国货物进出口总额为
4 160 000 000 000 美元,超过美国成为世界第一货物贸易大国.将这个数据用科学记数法可以
记为
(A) 124.16 10 美元. (B) 134.16 10 美元.
(C) 120.416 10 美元. (D) 10416 10 美元.
3.如图,已知 l1∥l2,∠A=40°,∠1=60°,则∠2 的度数为
(A)40°.
(B)60°.
(C)80°.
(D)100°.
4.下列计算正确的是
2
C
(第 3 题图)
l1
A
B
1
l2
(A) 22 3a a a . (B) 2 3 6 3)a b a b( .
(C) 2 2( )m ma a . (D) 3 2 6a a a .
5.不等式组-2≤ 1 1x 的解集,在数轴上表示正确的是
(A) (B)
(C) (D)
6.当 2a 时, 2
2
2 1 1( 1)a a
aa
的结果是
(A) 3
2
. (B) 3
2 .
(C) 1
2
. (D) 1
2 .
7.将一个 n 边形变成 n+1 边形,内角和将
(A)减少 180°. (B)增加 90°.
(C)增加 180°. (D)增加 360°.
8.某校为了丰富学生的校园生活,准备购买一批陶笛,已知 A 型陶笛比 B 型陶笛的单价
低 20 元,用 2700 元购买 A 型陶笛与用 4500 元购买 B 型陶笛的数量相同,设 A 型陶笛的单价
为 x 元,依题意,下面所列方程正确的是
(A) 2700 4500
20x x . (B) 2700 4500
20x x .
(C) 2700 4500
20x x . (D) 2700 4500
20x x .
0 1-1-2-3 0 1-1-2-3
0 1-1-2-3 0 1-1-2-3
9.如图,在⊙O 中,AC∥OB,∠BAO=25°,
则∠BOC 的度数为
(A)25°.
(B)50°.
(C)60°.
(D)80°.
10.从 1,2,3,4 中任取两个不同的数,其乘积大
于 4 的概率是
(A) 1
6
.
(B) 1
3
.
(C) 1
2
.
(D) 2
3
.
11.一个几何体的三视图如图所示,这个几何体的侧
面积为
(A) 2 cm2.
(B) 4 cm2.
(C)8 cm2.
(D)16 cm2.
12.请你计算:
(1 )(1 )x x ,
2(1 )(1 )x x x ,
…,
猜想 2(1 )(1x x x … )nx 的结果是
(A) 11 nx . (B) 11 nx .
(C)1 nx . (D)1 nx .
(第 11 题图)
2cm
主视图 左视图
俯视图
C B
A O
(第 9 题图)
B
15°60°
75°
(第 13 题图)
A
C
东
北13.如图,在某监测点 B 处望见一艘正在作业的渔船在南
偏西 15°方向的 A 处,若渔船沿北偏西 75°方向以 40 海里/小时
的速度航行,航行半小时后到达 C 处,在 C 处观测到 B 在
C 的北偏东 60°方向上,则 B,C 之间的距离为
(A)20 海里.
(B)10 3 海里.
(C) 20 2 海里.
(D)30 海里.
14.在平面直角坐标系中,函数 2 2 (y x x x ≥ 0) 的图象为 1C , 1C 关于原点对称的图象
为 2C ,则直线 y a (a 为常数)与 1C , 2C 的交点共有
(A)1 个.
(B)1 个,或 2 个.
(C)1 个,或 2 个,或 3 个.
(D)1 个,或 2 个,或 3 个,或 4 个.
第Ⅱ卷(非选择题 共 78 分)
注意事项:
1.第Ⅱ卷分填空题和解答题.
2.第Ⅱ卷所有题目的答案,考生须用 0.5 毫米黑色签字笔答在答题卡规定的区域内,在
试卷上答题不得分.
二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)
15.在实数范围内分解因式: 3 6x x .
16.某中学随机抽查了 50 名学生,了解他们一周的课外阅读时间,结果如下表所示:
则这 50 名学生一周的平均课外阅读时间是 小时.
17.如图,在 ABCD 中, 10BC , 9sin 10B ,
AC BC ,则 ABCD 的面积是 .
18.如图,反比例函数 4y x 的图象经过直角
三角形 OAB 的顶点 A,D 为斜边 OA 的中点,则
过点 D 的反比例函数的解析式为 .
19.一般地,我们把研究对象统称为元素,把一
些元素组成的总体称为集合.一个给定集合中的元素
是互不相同....的,也就是说,集合中的元素是不重复出
现的.如一组数 1,1,2,3,4 就可以构成一个集合,
记为 A={1,2,3,4}.
类比实数有加法运算,集合也可以“相加”.
定义:集合 A 与集合 B 中的所有元素组成的集
合称为集合 A 与集合 B 的和,记为 A+B. 若 A ={-2,0,1,5,7},B ={-3,0,1,3,5},
则 A+B = .
时间(小时) 4 5 6 7
人数 10 20 15 5
(第 18 题图)
A D
B C
(第 17 题图)
y
xO
A
B
D
三、解答题(本大题共 7 小题,共 63 分)
20.(本小题满分 7 分)
计算: 1 1sin60 32 83 1
.
21.(本小题满分 7 分)
随着人民生活水平的提高,购买老年代步车的人越来越多.这些老年代步车却成为交通安
全的一大隐患.针对这种现象,某校数学兴趣小组在《老年代步车现象的调查报告》中就“你
认为对老年代步车最有效的的管理措施”随机对某社区部分居民进行了问卷调查,其中调查
问卷设置以下选项(只选一项):
A:加强交通法规学习;B:实行牌照管理;C:加大交通违法处罚力度;D:纳入机动车
管理;E:分时间分路段限行.
调查数据的部分统计结果如下表:
(第 21 题图)
(1)根据上述统计表中的数据可得 m =_______,n =______,a =________;
(2)在答题卡中,补全条形统计图;
(3)该社区有居民 2600 人,根据上述调查结果,请你估计选择“D:纳入机动车管理”
的居民约有多少人?
管理措施 回答人数 百分比
A 25 5%
B 100 m
C 75 15%
D n 35%
E 125 25%
合计 a 100%
A B C D E 管理措施
人数
200
175
150
125
100
75
50
25
A22.(本小题满分 7 分)
如图,已知等腰三角形 ABC 的底角为 30°,
以 BC 为直径的⊙O 与底边 AB 交于点 D,过 D 作
DE AC ,垂足为 E.
(1)证明:DE 为⊙O 的切线;
(2)连接 OE,若 BC=4,求△OEC 的面积.
23.(本小题满分 9 分)
对一张矩形纸片 ABCD 进行折叠,具体操作如
下:
第一 步:先对折,使 AD 与 BC 重合,得到折
痕 MN,展开;
第二步:再一次折叠,使点 A 落在 MN 上的点
A 处,并使折痕经过点 B,得到折痕 BE,同时,
得到线段 BA , EA ,展开,如图 1;
第三步:再沿 EA 所在的直线折叠,点 B 落在
AD 上的点 B 处,得到折痕 EF,同时得到线段 B F ,
展开,如图 2.
(1)证明: 30ABE °;
(2)证明:四边形 BFB E 为菱形.
24.(本小题满分 9 分)
某景区的三个景点 A,B,C 在同一线路上,甲、乙两名游客从景点 A 出发,甲步行到景
点 C,乙乘景区观光车先到景点 B,在 B 处停留一段时间后,再步行到景点 C. 甲、乙两人离
开景点 A 后的路程 S(米)关于时间 t(分钟)的函数图象如图所示.
根据以上信息回答下列问题:
(1)乙出发后多长时间与甲相遇?
(2)要使甲到达景点 C 时,乙与
C 的路程不超过 400 米,则乙从景点 B
步行到景点 C 的速度至少为多少?
(结果精确到 0.1 米/分钟)
(第 23 题图)
B C
NA'
图 1
A
B
D
C
NA'
F
B'
图 2
E
(第 24 题图)
t(分钟)
M
E DA
M
甲
乙
3020 60 90
3000
5400
S(米)
0
(第 22 题图)
B CO
D
E
25.(本小题满分 11 分)
问题情境:如图 1,四边形 ABCD 是正方形,M 是
BC 边上的一点,E 是 CD 边的中点,AE 平分 DAM .
探究展示:
(1)证明: AM AD MC ;
(2) AM DE BM 是否成立?
若成立,请给出证明;若不成立,请说明理由.
拓展延伸:
(3)若四边形 ABCD 是长与宽不相等的矩形,
其他条件不变,如图 2,探究展示(1)、(2)中的结
论是否成立?请分别作出判断,不需要证明.
26.(本小题满分 13 分)
如图,在平面直角坐标系中,抛物线与 x 轴
交于点 A(-1,0)和点 B(1,0),直线 2 1y x
与 y 轴交于点 C,与抛物线交于点 C,D.
(1)求抛物线的解析式;
(2)求点 A 到直线 CD 的距离;
(3)平移抛物线,使抛物线的顶点 P 在直线
CD 上,抛物线与直线 CD 的另一个交点为 Q,点
G 在 y 轴正半轴上,当以 G,P,Q 三点为顶点的
三角形为等腰直角三角形时,求出所有符合条件的
G 点的坐标.
A
B M
D
E
C
图 1
A
B M
图 2
D
E
C
(第 25 题图)
(第 26 题图)
x
y
A B
C
D
O
绝密★启用前 试卷类型:A
2014 年临沂市初中学生学业考试试题
数学参考答案及评分标准
一、选择题(每小题 3 分,共 42 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14
答案 A A D B B D C D B C B A C C
二、填空题(每小题 3 分,共 15 分)
15. ( 6)( 6)x x x ; 16.5.3; 17.18 19 ;
18. 1y x
; 19.{-3,-2,0,1,3,5,7}.(注:各元素的排列顺序可以不同)
20.解:原式= 3 1 3 1322 8( 3 1)( 3 1)
= 3 1 3 22 2
······························································· (6 分)
= 12 2
= 3
2
.···································································· (7 分)
(注:本题有 3 项化简,每项化简正确得 2 分)
21.(1)20%,175, 500.·································································(3 分)
(2)
(注:画对一个得 1 分,共 2 分)
……………(2 分)
管理措施
人数
200
175
150
125
100
75
50
25
A B C D E
B C
O
D
E
G
F
A
(3)∵2600×35%=910(人),
∴选择 D 选项的居民约有 910 人.···················································· (2 分)
22.(1)(本小问 3 分)
证明:连接 OD.
∵OB=OD,
∴∠OBD=∠ODB.
又∵∠A=∠B=30°,
∴∠A=∠ODB,
∴DO∥AC.································(2 分)
∵DE⊥AC,
∴OD⊥DE.
∴DE 为⊙O 的切线.···········································································(3 分)
(2)(本小问 4 分)
连接 DC.
∵∠OBD=∠ODB=30°,
∴∠DOC=60°.
∴△ODC 为等边三角形.
∴∠ODC=60°,
∴∠CDE=30°.
又∵BC=4,
∴DC=2,
∴CE=1.···························································································(2 分)
方法一:
过点 E 作 EF⊥BC,交 BC 的延长线于点 F.
∵∠ECF=∠A+∠B=60°,
∴EF=CE·sin60°=1× 3
2
= 3
2
.···························································(3 分)
∴S△OEC
1 1 3 32 .2 2 2 2OC EF ····················································· (4 分)
方法二:
过点 O 作 OG⊥AC,交 AC 的延长线于点 G.
∵∠OCG=∠A+∠B=60°,
∴OG=OC·sin60°=2× 3
2
= 3 .··························································(3 分)
∴S△OEC
1 1 31 3 .2 2 2CE OG ······················································(4 分)
方法三:
∵OD∥CE,
∴S△OEC = S△DEC.
又∵DE=DC·cos30°=2× 3
2
= 3 ,························································ (3 分)
∴S△OEC
1 1 31 3 .2 2 2CE DE ······················································(4 分)
23.证明:(1)(本小问 5 分)
由题意知,M 是 AB 的中点,
△ABE 与△A'BE 关于 BE 所在的直线对称.[来源:学&科&网 Z&X&X&K]
∴AB=A'B,∠ABE=∠A'BE.················ (2 分)
在 Rt△A'MB 中,
1
2MB A'B,
∴∠BA'M=30°,····················································································(4 分)
∴∠A'BM=60°,
∴∠ABE=30°.····················································································· (5 分)
(2)(本小问 4 分)
∵∠ABE=30°,
∴∠EBF=60°,
∠BEF=∠AEB=60°,
∴△BEF 为等边三角形. ················ (2 分)
由题意知,
△BEF 与△B'EF 关于 EF 所在的直线对称.
∴BE=B'E=B'F=BF,
∴四边形 BF 'B E 为菱形.·······································································(4 分)
24.解:(1)(本小问 5 分)
当 0≤t≤90 时,设甲步行路程与时间的函数解析式为 S=at.
∵点(90,5400)在 S=at 的图象上,∴a=60.
∴函数解析式为 S=60t.······································································· (1 分)x§k§b 1
当 20≤t≤30 时,设乙乘观光车由景点 A 到 B 时的路程与时间的函数解析式为 S=mt+n.
∵点(20,0),(30,3000)在 S=mt+n 的图象上,
∴ 20 0,
30 3000.
m n
m n
解得 300,
6000.
m
n
················································· (2 分)
∴函数解析式为 S=300t-6000(20≤t≤30).·················································(3 分)
根据题意,得 60 ,
300 6000,
S t
S t
C
N
B
A'
图 1
E DA
M
B'
图 2
A
B
D
C
NA'
F
M
E
解得 25,
1500.
t
s
···················································································· (4 分)
∴乙出发 5 分钟后与甲相遇.·································································· (5 分)
(2)(本小问 4 分)
设当 60≤t≤90 时,乙步行由景点 B 到 C 的速度为 v 米/分钟,
根据题意,得 5400-3000-(90-60) v ≤400,···············································(2 分)
解不等式,得 v ≥ 200 66.73
.······························································· (3 分)
∴乙步行由 B 到 C 的速度至少为 66.7 米/分钟.·········································(4 分)
25. 证明:
(1)(本小问 4 分)
方法一:过点 E 作 EF⊥AM,垂足为 F.
∵AE 平分∠DAM,ED⊥AD,
∴ED=EF.··································· (1 分)
由勾股定理可得,
AD=AF.······································ (2 分)
又∵E 是 CD 边的中点,
∴EC=ED=EF.
又∵EM=EM,
∴Rt△EFM≌Rt△ECM.
∴MC=MF.·························································································(3 分)
∵AM=AF+FM,
∴AM=AD+MC.···················································································(4 分)
方法二:
连接 FC. 由方法一知,∠EFM=90°, AD=AF,EC=EF. ·······························(2 分)
则∠EFC=∠ECF,
∴∠MFC=∠MCF.
∴MF=MC.·························································································(3 分)
∵AM=AF+FM,
∴AM=AD+MC.···················································································(4 分)
方法三:
延长 AE,BC 交于点 G.
∵∠AED=∠GEC,∠ADE=∠GCE=90°,DE=EC,
∴△ADE≌△GCE.
∴AD=GC, ∠DAE=∠G.········································································(2 分)
又∵AE 平分∠DAM,
∴∠DAE=∠MAE,
∴∠G=∠MAE,
∴AM=GM,······················································································ (3 分)
C G
A
B M
D
E
F
N
∵GM=GC+MC=AD+MC,
∴AM=AD+MC.···················································································(4 分)
方法四:
连接 ME 并延长交 AD 的延长线于点 N,
∵∠MEC=∠NED,
EC=ED,
∠MCE=∠NDE=90°,
∴△MCE≌△NDE.
∴MC=ND,∠CME=∠DNE.·································································(2 分)
由方法一知△EFM≌△ECM,
∴∠FME=∠CME,
∴∠AMN=∠ANM.···············································································(3 分)
∴AM=AN=AD+DN=AD +MC.································································ (4 分)
(2)(本小问 5 分)
成立.·········································· (1 分)
方法一:延长 CB 使 BF=DE,
连接 AF,
∵AB=AD,∠ABF=∠ADE=90°,
∴△ABF≌△ADE,
∴∠FAB=∠EAD,∠F=∠AED.······· (2 分)
∵AE 平分∠DAM,
∴∠DAE=∠MAE.
∴∠FAB=∠MAE,
∴∠FAM=∠FAB+∠BAM=∠BAM+∠MAE=∠BAE.···································· (3 分)
∵AB∥DC,
∴∠BAE=∠DEA,
∴∠F=∠FAM,
∴AM=FM.························································································· (4 分)
又∵FM=BM+BF=BM+DE,
∴AM=BM+DE.··················································································· (5 分)
方法二:
设 MC=x,AD=a.
由(1)知 AM=AD+MC=a+x.
在 Rt△ABM 中,
∵ 2 2 2AM AB BM ,
∴ 2 2 2( ) ( )a x a a x ,·····································································(3 分)
∴ 1
4x a .·························································································· (4 分)
A
B M
D
E
CF
∴ 3
4BM a , 5
4AM a ,
∵BM+DE= 3 1 5
4 2 4a a a ,
∴ AM BM DE .·············································································· (5 分)
(3)(本小问 2 分)
AM=AD+MC 成立,·············································································(1 分)
AM=DE+BM 不成立.··········································································· (2 分)
26.(1)(本小问 3 分)
解:在 2 1y x 中,令 0x ,得
1y .
∴C(0,-1)·································· (1 分)
∵抛物线与 x 轴交于 A(-1,0), B(1,0),
∴C 为抛物线的顶点.
设抛物线的解析式为 2 1y ax ,
将 A(-1,0)代入,得 0=a-1.
∴a=1.
∴抛物线的解析式为 2 1y x .········ (3 分)
(2)(本小问 5 分)
方法一:
设直线 2 1y x 与 x 轴交于 E,
则 1(2E ,0).························································································ (1 分)
∴ 21 51 ( )2 2CE ,
1 312 2AE .····················································································(2 分)
连接 AC,过 A 作 AF⊥CD,垂足为 F,
S△CAE
1 1
2 2AE OC CE AF ,····························································· (4 分)
即 1 3 1 512 2 2 2 AF ,
∴ 3 5
5AF .······················································································ (5 分)
方法二:由方法一知,
∠AFE=90°, 3
2AE , 5
2CE .··························································· (2 分)
在△COE 与△AFE 中,
图 1
x
y
A B
C
D
O F
E
M
∠COE=∠AFE=90°,
∠CEO=∠AEF,
∴△COE∽△AFE .
∴ AF AE
CO CE
,···················································································· (4 分)
即
3
2
1 5
2
AF .
∴ 3 5
5AF .······················································································ (5 分)
(3)(本小问 5 分)
由 22 1 1x x ,得 1 0x , 2 2x .
∴D(2,3).··························································································(1 分)
如图 1,过 D 作 y 轴的垂线,垂足为 M,
由勾股定理,得
2 22 4 2 5CD .··········································································· (2 分)
在抛物线的平移过程中,PQ=CD.
(i)当 PQ 为斜边时,设 PQ 中点为 N,G(0,b),
则 GN= 5 .
∵∠GNC=∠EOC=90°,∠GCN=∠ECO,
∴△GNC ∽△EOC.
∴ GN CG
OE CE
,
∴ 5 1
1 5
2 2
b ,
∴b=4.
∴G(0,4) . ·································(3 分)
(ii)当 P 为直角顶点时,
设 G(0,b),
则 2 5PG ,
同(i)可得 b=9,
则 G(0,9) .························································································ (4 分)
(iii)当 Q 为直角顶点时,
同(ii)可得 G(0,9) .
x
y
E
C
O
G
Q
P
N
图 2
综上所述,符合条件的点 G 有两个,分别是 1G (0,4), 2G (0,9).················· (5 分)
x
y
E
C
D
O
G
Q
P
图 3
x
y
E
C
O
G
Q
P
图 4