2014年临沂市中考数学试卷及答案word版
加入VIP免费下载

2014年临沂市中考数学试卷及答案word版

ID:631747

大小:621.5 KB

页数:16页

时间:2021-03-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
绝密★启用前 试卷类型:A 2014 年临沂市初中学生学业考试试题 数 学 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共 8 页,满分 120 分,考试时间 120 分钟.答卷前,考生务必用 0.5 毫米黑色签字笔将自己的姓名、准考证号、座号填写在试 卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回. 2.答题注意事项见答题卡,答在本试卷上不得分. 第Ⅰ卷(选择题 共 42 分) 一、选择题(本大题共 14 小题,每小题 3 分,共 42 分)在每小题所给出的四个选项中, 只有一项是符合题目要求的. 1.-3 的相反数是 (A)3. (B)-3. (C) 1 3 . (D) 1 3 . 2.根据世界贸易组织(W T O )秘书处初步统计数据,2013 年中国货物进出口总额为 4 160 000 000 000 美元,超过美国成为世界第一货物贸易大国.将这个数据用科学记数法可以 记为 (A) 124.16 10 美元. (B) 134.16 10 美元. (C) 120.416 10 美元. (D) 10416 10 美元. 3.如图,已知 l1∥l2,∠A=40°,∠1=60°,则∠2 的度数为 (A)40°. (B)60°. (C)80°. (D)100°. 4.下列计算正确的是 2 C (第 3 题图) l1 A B 1 l2 (A) 22 3a a a  . (B) 2 3 6 3)a b a b( . (C) 2 2( )m ma a  . (D) 3 2 6a a a  . 5.不等式组-2≤ 1 1x   的解集,在数轴上表示正确的是 (A) (B) (C) (D) 6.当 2a  时, 2 2 2 1 1( 1)a a aa     的结果是 (A) 3 2 . (B) 3 2 . (C) 1 2 . (D) 1 2 . 7.将一个 n 边形变成 n+1 边形,内角和将 (A)减少 180°. (B)增加 90°. (C)增加 180°. (D)增加 360°. 8.某校为了丰富学生的校园生活,准备购买一批陶笛,已知 A 型陶笛比 B 型陶笛的单价 低 20 元,用 2700 元购买 A 型陶笛与用 4500 元购买 B 型陶笛的数量相同,设 A 型陶笛的单价 为 x 元,依题意,下面所列方程正确的是 (A) 2700 4500 20x x . (B) 2700 4500 20x x  . (C) 2700 4500 20x x . (D) 2700 4500 20x x  . 0 1-1-2-3 0 1-1-2-3 0 1-1-2-3 0 1-1-2-3 9.如图,在⊙O 中,AC∥OB,∠BAO=25°, 则∠BOC 的度数为 (A)25°. (B)50°. (C)60°. (D)80°. 10.从 1,2,3,4 中任取两个不同的数,其乘积大 于 4 的概率是 (A) 1 6 . (B) 1 3 . (C) 1 2 . (D) 2 3 . 11.一个几何体的三视图如图所示,这个几何体的侧 面积为 (A) 2 cm2. (B) 4 cm2. (C)8 cm2. (D)16 cm2. 12.请你计算: (1 )(1 )x x  , 2(1 )(1 )x x x   , …, 猜想 2(1 )(1x x x    … )nx 的结果是 (A) 11 nx  . (B) 11 nx  . (C)1 nx . (D)1 nx . (第 11 题图) 2cm 主视图 左视图 俯视图 C B A O (第 9 题图) B 15°60° 75° (第 13 题图) A C 东 北13.如图,在某监测点 B 处望见一艘正在作业的渔船在南 偏西 15°方向的 A 处,若渔船沿北偏西 75°方向以 40 海里/小时 的速度航行,航行半小时后到达 C 处,在 C 处观测到 B 在 C 的北偏东 60°方向上,则 B,C 之间的距离为 (A)20 海里. (B)10 3 海里. (C) 20 2 海里. (D)30 海里. 14.在平面直角坐标系中,函数 2 2 (y x x x  ≥ 0) 的图象为 1C , 1C 关于原点对称的图象 为 2C ,则直线 y a (a 为常数)与 1C , 2C 的交点共有 (A)1 个. (B)1 个,或 2 个. (C)1 个,或 2 个,或 3 个. (D)1 个,或 2 个,或 3 个,或 4 个. 第Ⅱ卷(非选择题 共 78 分) 注意事项: 1.第Ⅱ卷分填空题和解答题. 2.第Ⅱ卷所有题目的答案,考生须用 0.5 毫米黑色签字笔答在答题卡规定的区域内,在 试卷上答题不得分. 二、填空题(本大题共 5 小题,每小题 3 分,共 15 分) 15.在实数范围内分解因式: 3 6x x  . 16.某中学随机抽查了 50 名学生,了解他们一周的课外阅读时间,结果如下表所示: 则这 50 名学生一周的平均课外阅读时间是 小时. 17.如图,在 ABCD 中, 10BC  , 9sin 10B  , AC BC ,则 ABCD 的面积是 . 18.如图,反比例函数 4y x 的图象经过直角 三角形 OAB 的顶点 A,D 为斜边 OA 的中点,则 过点 D 的反比例函数的解析式为 . 19.一般地,我们把研究对象统称为元素,把一 些元素组成的总体称为集合.一个给定集合中的元素 是互不相同....的,也就是说,集合中的元素是不重复出 现的.如一组数 1,1,2,3,4 就可以构成一个集合, 记为 A={1,2,3,4}. 类比实数有加法运算,集合也可以“相加”. 定义:集合 A 与集合 B 中的所有元素组成的集 合称为集合 A 与集合 B 的和,记为 A+B. 若 A ={-2,0,1,5,7},B ={-3,0,1,3,5}, 则 A+B = . 时间(小时) 4 5 6 7 人数 10 20 15 5 (第 18 题图) A D B C (第 17 题图) y xO A B D 三、解答题(本大题共 7 小题,共 63 分) 20.(本小题满分 7 分) 计算: 1 1sin60 32 83 1      . 21.(本小题满分 7 分) 随着人民生活水平的提高,购买老年代步车的人越来越多.这些老年代步车却成为交通安 全的一大隐患.针对这种现象,某校数学兴趣小组在《老年代步车现象的调查报告》中就“你 认为对老年代步车最有效的的管理措施”随机对某社区部分居民进行了问卷调查,其中调查 问卷设置以下选项(只选一项): A:加强交通法规学习;B:实行牌照管理;C:加大交通违法处罚力度;D:纳入机动车 管理;E:分时间分路段限行. 调查数据的部分统计结果如下表: (第 21 题图) (1)根据上述统计表中的数据可得 m =_______,n =______,a =________; (2)在答题卡中,补全条形统计图; (3)该社区有居民 2600 人,根据上述调查结果,请你估计选择“D:纳入机动车管理” 的居民约有多少人? 管理措施 回答人数 百分比 A 25 5% B 100 m C 75 15% D n 35% E 125 25% 合计 a 100% A B C D E 管理措施 人数 200 175 150 125 100 75 50 25 A22.(本小题满分 7 分) 如图,已知等腰三角形 ABC 的底角为 30°, 以 BC 为直径的⊙O 与底边 AB 交于点 D,过 D 作 DE AC ,垂足为 E. (1)证明:DE 为⊙O 的切线; (2)连接 OE,若 BC=4,求△OEC 的面积. 23.(本小题满分 9 分) 对一张矩形纸片 ABCD 进行折叠,具体操作如 下: 第一 步:先对折,使 AD 与 BC 重合,得到折 痕 MN,展开; 第二步:再一次折叠,使点 A 落在 MN 上的点 A 处,并使折痕经过点 B,得到折痕 BE,同时, 得到线段 BA , EA ,展开,如图 1; 第三步:再沿 EA 所在的直线折叠,点 B 落在 AD 上的点 B 处,得到折痕 EF,同时得到线段 B F , 展开,如图 2. (1)证明: 30ABE  °; (2)证明:四边形 BFB E 为菱形. 24.(本小题满分 9 分) 某景区的三个景点 A,B,C 在同一线路上,甲、乙两名游客从景点 A 出发,甲步行到景 点 C,乙乘景区观光车先到景点 B,在 B 处停留一段时间后,再步行到景点 C. 甲、乙两人离 开景点 A 后的路程 S(米)关于时间 t(分钟)的函数图象如图所示. 根据以上信息回答下列问题: (1)乙出发后多长时间与甲相遇? (2)要使甲到达景点 C 时,乙与 C 的路程不超过 400 米,则乙从景点 B 步行到景点 C 的速度至少为多少? (结果精确到 0.1 米/分钟) (第 23 题图) B C NA' 图 1 A B D C NA' F B' 图 2 E (第 24 题图) t(分钟) M E DA M 甲 乙 3020 60 90 3000 5400 S(米) 0 (第 22 题图) B CO D E 25.(本小题满分 11 分) 问题情境:如图 1,四边形 ABCD 是正方形,M 是 BC 边上的一点,E 是 CD 边的中点,AE 平分 DAM . 探究展示: (1)证明: AM AD MC  ; (2) AM DE BM  是否成立? 若成立,请给出证明;若不成立,请说明理由. 拓展延伸: (3)若四边形 ABCD 是长与宽不相等的矩形, 其他条件不变,如图 2,探究展示(1)、(2)中的结 论是否成立?请分别作出判断,不需要证明. 26.(本小题满分 13 分) 如图,在平面直角坐标系中,抛物线与 x 轴 交于点 A(-1,0)和点 B(1,0),直线 2 1y x  与 y 轴交于点 C,与抛物线交于点 C,D. (1)求抛物线的解析式; (2)求点 A 到直线 CD 的距离; (3)平移抛物线,使抛物线的顶点 P 在直线 CD 上,抛物线与直线 CD 的另一个交点为 Q,点 G 在 y 轴正半轴上,当以 G,P,Q 三点为顶点的 三角形为等腰直角三角形时,求出所有符合条件的 G 点的坐标. A B M D E C 图 1 A B M 图 2 D E C (第 25 题图) (第 26 题图) x y A B C D O 绝密★启用前 试卷类型:A 2014 年临沂市初中学生学业考试试题 数学参考答案及评分标准 一、选择题(每小题 3 分,共 42 分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案 A A D B B D C D B C B A C C 二、填空题(每小题 3 分,共 15 分) 15. ( 6)( 6)x x x  ; 16.5.3; 17.18 19 ; 18. 1y x  ; 19.{-3,-2,0,1,3,5,7}.(注:各元素的排列顺序可以不同) 20.解:原式= 3 1 3 1322 8( 3 1)( 3 1)       = 3 1 3 22 2    ······························································· (6 分) = 12 2  = 3 2 .···································································· (7 分) (注:本题有 3 项化简,每项化简正确得 2 分) 21.(1)20%,175, 500.·································································(3 分) (2) (注:画对一个得 1 分,共 2 分) ……………(2 分) 管理措施 人数 200 175 150 125 100 75 50 25 A B C D E B C O D E G F A (3)∵2600×35%=910(人), ∴选择 D 选项的居民约有 910 人.···················································· (2 分) 22.(1)(本小问 3 分) 证明:连接 OD. ∵OB=OD, ∴∠OBD=∠ODB. 又∵∠A=∠B=30°, ∴∠A=∠ODB, ∴DO∥AC.································(2 分) ∵DE⊥AC, ∴OD⊥DE. ∴DE 为⊙O 的切线.···········································································(3 分) (2)(本小问 4 分) 连接 DC. ∵∠OBD=∠ODB=30°, ∴∠DOC=60°. ∴△ODC 为等边三角形. ∴∠ODC=60°, ∴∠CDE=30°. 又∵BC=4, ∴DC=2, ∴CE=1.···························································································(2 分) 方法一: 过点 E 作 EF⊥BC,交 BC 的延长线于点 F. ∵∠ECF=∠A+∠B=60°, ∴EF=CE·sin60°=1× 3 2 = 3 2 .···························································(3 分) ∴S△OEC 1 1 3 32 .2 2 2 2OC EF      ····················································· (4 分) 方法二: 过点 O 作 OG⊥AC,交 AC 的延长线于点 G. ∵∠OCG=∠A+∠B=60°, ∴OG=OC·sin60°=2× 3 2 = 3 .··························································(3 分) ∴S△OEC 1 1 31 3 .2 2 2CE OG      ······················································(4 分) 方法三: ∵OD∥CE, ∴S△OEC = S△DEC. 又∵DE=DC·cos30°=2× 3 2 = 3 ,························································ (3 分) ∴S△OEC 1 1 31 3 .2 2 2CE DE      ······················································(4 分) 23.证明:(1)(本小问 5 分) 由题意知,M 是 AB 的中点, △ABE 与△A'BE 关于 BE 所在的直线对称.[来源:学&科&网 Z&X&X&K] ∴AB=A'B,∠ABE=∠A'BE.················ (2 分) 在 Rt△A'MB 中, 1 2MB  A'B, ∴∠BA'M=30°,····················································································(4 分) ∴∠A'BM=60°, ∴∠ABE=30°.····················································································· (5 分) (2)(本小问 4 分) ∵∠ABE=30°, ∴∠EBF=60°, ∠BEF=∠AEB=60°, ∴△BEF 为等边三角形. ················ (2 分) 由题意知, △BEF 与△B'EF 关于 EF 所在的直线对称. ∴BE=B'E=B'F=BF, ∴四边形 BF 'B E 为菱形.·······································································(4 分) 24.解:(1)(本小问 5 分) 当 0≤t≤90 时,设甲步行路程与时间的函数解析式为 S=at. ∵点(90,5400)在 S=at 的图象上,∴a=60. ∴函数解析式为 S=60t.······································································· (1 分)x§k§b 1 当 20≤t≤30 时,设乙乘观光车由景点 A 到 B 时的路程与时间的函数解析式为 S=mt+n. ∵点(20,0),(30,3000)在 S=mt+n 的图象上, ∴ 20 0, 30 3000. m n m n      解得 300, 6000. m n     ················································· (2 分) ∴函数解析式为 S=300t-6000(20≤t≤30).·················································(3 分) 根据题意,得 60 , 300 6000, S t S t     C N B A' 图 1 E DA M B' 图 2 A B D C NA' F M E 解得 25, 1500. t s    ···················································································· (4 分) ∴乙出发 5 分钟后与甲相遇.·································································· (5 分) (2)(本小问 4 分) 设当 60≤t≤90 时,乙步行由景点 B 到 C 的速度为 v 米/分钟, 根据题意,得 5400-3000-(90-60) v ≤400,···············································(2 分) 解不等式,得 v ≥ 200 66.73  .······························································· (3 分) ∴乙步行由 B 到 C 的速度至少为 66.7 米/分钟.·········································(4 分) 25. 证明: (1)(本小问 4 分) 方法一:过点 E 作 EF⊥AM,垂足为 F. ∵AE 平分∠DAM,ED⊥AD, ∴ED=EF.··································· (1 分) 由勾股定理可得, AD=AF.······································ (2 分) 又∵E 是 CD 边的中点, ∴EC=ED=EF. 又∵EM=EM, ∴Rt△EFM≌Rt△ECM. ∴MC=MF.·························································································(3 分) ∵AM=AF+FM, ∴AM=AD+MC.···················································································(4 分) 方法二: 连接 FC. 由方法一知,∠EFM=90°, AD=AF,EC=EF. ·······························(2 分) 则∠EFC=∠ECF, ∴∠MFC=∠MCF. ∴MF=MC.·························································································(3 分) ∵AM=AF+FM, ∴AM=AD+MC.···················································································(4 分) 方法三: 延长 AE,BC 交于点 G. ∵∠AED=∠GEC,∠ADE=∠GCE=90°,DE=EC, ∴△ADE≌△GCE. ∴AD=GC, ∠DAE=∠G.········································································(2 分) 又∵AE 平分∠DAM, ∴∠DAE=∠MAE, ∴∠G=∠MAE, ∴AM=GM,······················································································ (3 分) C G A B M D E F N ∵GM=GC+MC=AD+MC, ∴AM=AD+MC.···················································································(4 分) 方法四: 连接 ME 并延长交 AD 的延长线于点 N, ∵∠MEC=∠NED, EC=ED, ∠MCE=∠NDE=90°, ∴△MCE≌△NDE. ∴MC=ND,∠CME=∠DNE.·································································(2 分) 由方法一知△EFM≌△ECM, ∴∠FME=∠CME, ∴∠AMN=∠ANM.···············································································(3 分) ∴AM=AN=AD+DN=AD +MC.································································ (4 分) (2)(本小问 5 分) 成立.·········································· (1 分) 方法一:延长 CB 使 BF=DE, 连接 AF, ∵AB=AD,∠ABF=∠ADE=90°, ∴△ABF≌△ADE, ∴∠FAB=∠EAD,∠F=∠AED.······· (2 分) ∵AE 平分∠DAM, ∴∠DAE=∠MAE. ∴∠FAB=∠MAE, ∴∠FAM=∠FAB+∠BAM=∠BAM+∠MAE=∠BAE.···································· (3 分) ∵AB∥DC, ∴∠BAE=∠DEA, ∴∠F=∠FAM, ∴AM=FM.························································································· (4 分) 又∵FM=BM+BF=BM+DE, ∴AM=BM+DE.··················································································· (5 分) 方法二: 设 MC=x,AD=a. 由(1)知 AM=AD+MC=a+x. 在 Rt△ABM 中, ∵ 2 2 2AM AB BM  , ∴ 2 2 2( ) ( )a x a a x    ,·····································································(3 分) ∴ 1 4x a .·························································································· (4 分) A B M D E CF ∴ 3 4BM a , 5 4AM a , ∵BM+DE= 3 1 5 4 2 4a a a  , ∴ AM BM DE  .·············································································· (5 分) (3)(本小问 2 分) AM=AD+MC 成立,·············································································(1 分) AM=DE+BM 不成立.··········································································· (2 分) 26.(1)(本小问 3 分) 解:在 2 1y x  中,令 0x  ,得 1y   . ∴C(0,-1)·································· (1 分) ∵抛物线与 x 轴交于 A(-1,0), B(1,0), ∴C 为抛物线的顶点. 设抛物线的解析式为 2 1y ax  , 将 A(-1,0)代入,得 0=a-1. ∴a=1. ∴抛物线的解析式为 2 1y x  .········ (3 分) (2)(本小问 5 分) 方法一: 设直线 2 1y x  与 x 轴交于 E, 则 1(2E ,0).························································································ (1 分) ∴ 21 51 ( )2 2CE    , 1 312 2AE    .····················································································(2 分) 连接 AC,过 A 作 AF⊥CD,垂足为 F, S△CAE 1 1 2 2AE OC CE AF    ,····························································· (4 分) 即 1 3 1 512 2 2 2 AF     , ∴ 3 5 5AF  .······················································································ (5 分) 方法二:由方法一知, ∠AFE=90°, 3 2AE  , 5 2CE  .··························································· (2 分) 在△COE 与△AFE 中, 图 1 x y A B C D O F E M ∠COE=∠AFE=90°, ∠CEO=∠AEF, ∴△COE∽△AFE . ∴ AF AE CO CE  ,···················································································· (4 分) 即 3 2 1 5 2 AF  . ∴ 3 5 5AF  .······················································································ (5 分) (3)(本小问 5 分) 由 22 1 1x x   ,得 1 0x  , 2 2x  . ∴D(2,3).··························································································(1 分) 如图 1,过 D 作 y 轴的垂线,垂足为 M, 由勾股定理,得 2 22 4 2 5CD    .··········································································· (2 分) 在抛物线的平移过程中,PQ=CD. (i)当 PQ 为斜边时,设 PQ 中点为 N,G(0,b), 则 GN= 5 . ∵∠GNC=∠EOC=90°,∠GCN=∠ECO, ∴△GNC ∽△EOC. ∴ GN CG OE CE  , ∴ 5 1 1 5 2 2 b  , ∴b=4. ∴G(0,4) . ·································(3 分) (ii)当 P 为直角顶点时, 设 G(0,b), 则 2 5PG  , 同(i)可得 b=9, 则 G(0,9) .························································································ (4 分) (iii)当 Q 为直角顶点时, 同(ii)可得 G(0,9) . x y E C O G Q P N 图 2 综上所述,符合条件的点 G 有两个,分别是 1G (0,4), 2G (0,9).················· (5 分) x y E C D O G Q P 图 3 x y E C O G Q P 图 4

资料: 4.5万

进入主页

人气:

10000+的老师在这里下载备课资料