六年级数学上册同步练习题库
加入VIP免费下载

六年级数学上册同步练习题库

ID:634783

大小:1.71 MB

页数:52页

时间:2021-03-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
小学同步数学 六年级 教师:杨文辉 (一) 主要内容 求一个数比另一个数多(少)百分之几、纳税问题 考点分析 1、一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个数。 2、应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额 = 收入 × 税率 典型例题 例 1、(解决“求一个数比另一个数多百分之几”的实际问题) 向阳客车厂原计划生产客车 5000 辆,实际生产 5500 辆。实际比计划多生产百分之几? 例 2、(解决“求一个数比另一个数少百分之几”的实际问题) 向阳客车厂原计划生产客车 5000 辆,实际生产 5500 辆。计划比实际少生产百分之几? 例 3、(难点突破) 一筐苹果比一筐梨重 20%,那么一筐梨就比一筐苹果轻 20% 例 4、(考点透视) 一种电子产品,原价每台 5000 元,现在降低到 3000 元。降价百分之几? 例 5、(考点透视) 一项工程,原计划 10 天完成,实际 8 天就完成了任务,实际每天比原计划多修百分之几? 例 6、(应纳税额的计算方法) 益民五金公司去年的营业总额为 400 万元。如果按营业额的 3%缴纳营业税,去年应缴纳营业 税多少万元? 例 7、(和应纳税额有关的简单实际问题) 王叔叔买了一辆价值 16000 元的摩托车。按规定,买摩托车要缴纳 10%的车辆购置税。王叔叔 买这辆摩托车一共要花多少钱? 例 8、扬州某风景区 2007 年“十一”黄金周接待游客 9 万人次,门票收入达 270 万元。按门票的 5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税 0.45 万元。 课后练习 一、填空。 1、篮球个数是足球的 125%,篮球比足球多( )%,足球个数是篮球的( )%,足球个数 比篮球少( )%。 2、排球个数比篮球多 18%,排球个数相当于篮球的( )%。 3、足球个数比篮球少 20%。排球个数比篮球多 18%,( )球个数最多,( )球个数最少。 4、果园里种了 60 棵果树,其中 36 棵是苹果树。苹果树占总棵数的( )%,其余的果树占总 棵数的( )%。 5、女生人数占全班的百分之几 = ( )÷ ( ) 杨树的棵数比柏树多百分之几 = ( )÷ ( ) 实际节约了百分之几 = ( )÷ ( ) 比计划超产了百分之几 = ( )÷ ( ) 6、20 的 40%是( ),36 的 10%是( ),50 千克的 60%是( )千克,800 米的 25% 是( )米。 7、进口价a元的一批货物,税率和运费都是货物价值的 10%,这批货物的成本是( )元。 二、解决实际问题 1、白兔有 25 只,灰兔有 30 只。灰兔比白兔多百分之几? 2、四美食盐厂上月计划生产食盐 450 吨,实际生产了 480 吨。实际比计划多生产了百分之几? 3、小明家八月份用电 80 千瓦时,小亮家比小明家节约 10 千瓦时,小亮家比小明家八月份节约 用电百分之几? 4、某化肥厂 9 月份实际生产化肥 5000 吨,比计划超产 500 吨。比计划超产百分之几? 5、蓝天帽业厂去年收入总额达 900 万元,按国家的税率规定,应缴纳 17%的增值税。一共要 缴纳多少万元的增值税? 6、爸爸买了一辆价值 12 万元的家用轿车。按规定需缴纳 10%的车辆购置税。爸爸买这辆车共 需花多少钱? (二) 主要内容: 应用百分数解决实际问题:利息、折扣问题 考点分析 1、存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息占本金的 百分率叫做利率。 2、利息=本金×利率×时间。 3、几折就是十分之几,也就是百分之几十。 4、商品现价 = 商品原价 × 折数。 典型例题 例 1、(解决税前利息)李明把 500 元钱按三年期整存整取存入银行,到期后应得利息多少元? 存期(整存整取) 年利率 一年 3.87% 二年 4.50% 三年 5.22% 例 2、(解决税后利息) 根据国家税法规定,个人在银行存款所得的利息要按 5%的税率缴纳利息税。例 1 中纳税 后李明实得利息多少元? 例 3、方明将 1500 元存入银行,定期二年,年利率是 4.50%。两年后方明取款时要按 5%缴纳 利息税,到期后方明实得利息多少元? 例 4、(求折扣)一本书现价 6.4 元,比原价便宜 1.6 元。这本书是打几折出售的? 例 5、(已知折扣求原价) “国庆”商场促销,一套西服打八五折出售是 1020 元,这套西服原价多少元? 例 6、一台液晶电视 6000 元,若打七五折出售,可降价 2000 元。 例 7、(和应纳税额有关的简单实际问题) 一批电冰箱,原来每台售价 2000 元,现促销打九折出售,有一顾客购买时,要求再打九折,如 果能够成交,售价是多少元? 例 8、(考点透视) 商店以 40 元的价钱卖出一件商品,亏了 20%。这件商品原价多少元,亏了多少元? 例 9、(考点透视) 某商店同时卖出两件商品,每件各得 30 元,其中一件盈利 20%,另一件亏本 20%。这个商店 卖出这两件商品总体上是盈利还是亏本?具体是多少? 课后练习 1、李叔叔于 2000 年 1 月 1 日在银行存了活期储蓄 1000 元,如果每月的利率是 0.165%,存款 三个月时,可得到利息多少元?本金和利息一共多少元? 2、叔叔今年存入银行 10 万元,定期二年,年利率 4.50% ,二年后到期,扣除利息税 5% ,得到的 利息能买一台 6000 元的电脑吗? 3、小华妈妈是一名光荣的中国共产党员,按党章规定,工资收入在 400-600 元的,每月党费应缴纳 工资总额的 0.5%,在 600-800 元的应缴纳 1%,在 800-1000 元的,应缴纳 1.5%,在 1000 以上的 应缴纳 2%,小华妈妈的工资为 2400 元,她这一年应缴纳党费多少元? 4、填空: 八折=( )% 九五折=( )% 40% =( )折 75% = ( )折 5、只列式不计算。 ①买一件 T 恤衫,原价 80 元,如果打八折出售是多少元? ②有一种型号的手机,原价 1000 元,现价 900 元,打几折出售? ③老师在商店里花了 56 元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售。这条牛仔裤 原价多少元? 6、算出折数。 ⑴在日常生活中打“折”现象随处可见。这儿有一家快餐店也在搞促销,你能算出这些美食分 别打几折吗?每人可任选一种计算一下。 ①食品原价 4 元,现价 3 元。 ②食品原价 5 元,现价 4 元。 ③食品原价 10 元,现价 7 元。 7、常熟新开了一家永乐生活电器,“十·一”节日期间,那里的商品降价幅度很大。有一种款式的 MP3,原价 280 元,现在打三折出售。根据这个信息,你想计算什么? ①现价多少元? ②现价比原价便宜了多少元? 改编:(1)有一种款式的 MP3,打三折出售是 84 元,原价多少元? (2)有一种款式的 MP3,打三折出售比原价便宜了 196 元,原价多少元? 8、一种矿泉水,零售每瓶卖 2 元,生产厂家为感谢广大顾客对产品的厚爱,特开展“买四赠一” 大酬宾活动,生产厂家的做法优惠了百分之几? (注意解题策略的多样性。) 9、一辆自行车 200 元,在原价基础上打八折,小明有贵宾卡,还可以再打九折,小明买这辆车 花了多少钱? 10、小红在书店买了两本打八折出售的书,共花了 12 元,小红买这两本书便宜了多少钱。 (三) 主要内容 列方程解稍复杂的百分数实际问题 考点分析 1、解答稍复杂的百分数应用题和稍复杂的分数应用题的解题思路、解题方法完全相同。 2、用字母或含有字母的式子表示题中两个未知的数量,找出数量间的相等关系。根据求一个数 的百分之几是多少用乘法列方程求解,或者根据除法的意义,直接解答。 3、“已知比一个数多(少)百分之几的数是多少,求这个数”的实际问题,可以根据数量间的 相等关系列方程求解;或者根据除法的意义,直接解答。 4、灵活运用本单元所学知识,、解决稍复杂的百分数实际问题,沟通分数、百分数应用题之间 的联系。 典型例题 例 1、(列方程解答和倍问题) 一根绳子长 48 米,截成甲、乙两段,其中乙绳长度是甲绳的 60%。甲、乙两绳各长多少米? 例 2、(列方程解答差倍问题) 体育馆内排球的个数是篮球的 75%,篮球比排球多 6 个。篮球和排球各有多少个? 例 3、六年级男生比女生少 40 人,六年级女生人数相当于男生人数的 140%,六年级男生有多 少人? 例 4、(列方程解决“已知比一个数少百分之几的数是多少,求这个数”的百分数实际问题) 白兔有 36 只,比灰兔少 20%。灰兔有多少只? 例 5、(列方程解决“已知比一个数多百分之几的数是多少,求这个数”的百分数实际问题) 白兔有 48 只,比灰兔多 20%。灰兔有多少只? 例 6、(难点突破) 某商品如果按现价 18 元出售,则亏了 25%,原来成本是多少元?如果想盈利 25%,应按多少 元出售该商品? 例 7、(考点透视) 水果批发部要运进一批水果,第一次运进总量的 22%,第二次运进 1.5 吨,两次共运进这批水 果的 62%,这批水果一共有多少吨? 课后练习 一、基本训练: 1、找出下列各题中的单位“1”。 ①男生人数占女生人数 60%。 ②男生人数比女生人数多 20%。 ③女生人数比男生人数少 25%。 ④加工一批零件,已完成了 80%。 ⑤今年的猪肉单价比去年上涨了 80%。 2、根据所给信息,说出数量间的相等关系 ①一条路,已修了全长的 60% ②一种彩电,现价比原价降低 10% ③松树的棵数比柏树多1 3 3、看图列式。 用去 30% ? 只 灰兔 比灰兔多 25% 用去 ? 吨 还剩 28 吨 白兔 30 只 4、列式计算: (1)一个数的 75%比 30 的 25%多 1.5,求这个数。 (2)一个数的 25%比它的 75%少 30,求这个数。 二、解决问题: 1、对比练习 (1)某工厂六月份用煤 60 吨,六月份比五月份少用煤 25%,五月份用煤多少吨? (2)某工厂六月份用煤 60 吨,五月份比六月份多用煤 25%,五月份用煤多少吨? 2、一张课桌比一把椅子贵 10 元,如果椅子的单价是课桌单价的 60%,课桌和椅子的单价各是 多少元? 3、果园里的梨树和苹果树共有 360 棵,其中的苹果树的棵树是梨树的棵树的 20%。苹果树和梨 树各有多少棵? 4、一套桌椅的价格是 78 元,其中椅子的价格是桌子的 30%。桌子和椅子的价格各是多少元? 5、一条绳子,第一次剪去全长的 25%,第二次剪去全长的 35%,两次共剪去 6 米,这条绳子共 长多少米? 6、一条绳子,第一次剪去全长的 25%,第二次剪去全长的 35%,第二次比第一次多剪了 1 米, 这条绳子长多少米? 7、根据问题列式。 平山茶场去年原计划种茶 20 公顷,实际种茶 25 公顷,________? ①实际种茶的公顷数是原计划的百分之几? ②计划种茶的公顷数是实际的百分之几? ③实际种茶的公顷数比原计划多百分之几? ④计划种茶的公顷数比实际少百分之几? 8、根据算式填条件 果园里有苹果树 200 棵, ,梨树有多少棵? ①200÷20% ②200×20% ③200÷(1+20%) ④200÷(1-20%) ⑤200×(1-20%) ⑥200×(1+20%) (四) 主要内容 圆柱和圆锥的认识、圆柱的表面积 考点分析 1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。形成圆柱的面还有一个曲面, 叫做圆柱的侧面。 圆柱两个底面之间的距离叫做圆柱的高。 2、圆锥的底面是个圆,圆锥的侧面是一个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。 3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。 4、圆柱的侧面积 = 底面周长 × 高 5、圆柱的表面积 = 侧面积 + 底面积 × 2 典型例题 例 1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点? 例 2、求下面立体图形的底面周长和底面积。 半径 3 厘米 直径 10 米 例 3、判断:圆柱和圆锥都有无数条高。 例 4、(圆柱的侧面积)体育一个圆柱,底面直径是 5 厘米,高是 12 厘米。求它的侧面积。 例 5、(圆柱的表面积) 做一个圆柱形油桶,底面直径是 0.6 米,高是 1 米,至少需要多少平方米铁皮?(得数保留整数) 例 6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是 30 厘米,高是 50 厘米。做这样一个水桶, 至少需用铁皮 6123 平方厘米。 例 7、(考点透视)一个圆柱的侧面积展开是一个边长 15.7 厘米的正方形。这个圆柱的表面积 是多少平方厘米? 例 8、(考点透视)一个圆柱形的游泳池,底面直径是 10 米,高是 4 米。在它的四周和底部涂 水泥,每千克水泥可涂 5 平方米,共需多少千克水泥? 例 9、(考点透视)把一个底面半径是 2 分米,长是 9 分米的圆柱形木头锯成长短不同的三小段 圆柱形木头,表面积增加了多少平方分米? 课后练习 下面( )图形旋转会形成圆柱。 3、在下图中,以直线为轴旋转,可以得出圆锥的是( )。 4、求下列圆柱体的侧面积 (1)底面半径是 3 厘米,高是 4 厘米。 (2)底面直径是 4 厘米,高是 5 厘米。 (3)底面周长是 12.56 厘米,高是 4 厘米。 5、求下列圆柱体的表面积 (1)底面半径是 4 厘米,高是 6 厘米。 (2)底面直径是 6 厘米,高是 12 厘米。 (3)底面周长是 25.12 厘米,高是 8 厘米。 6、用铁皮制作一个圆柱形烟囱,要求底面直径是 3 分米,高是 15 分米,制作这个烟囱至少需要铁 皮多少平方分米?(接头处不计,得数保留整平方分米) 7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。 8、一个圆柱形蓄水池,底面周长是 25.12 米,高是 4 米,将这个蓄水池四周及底部抹上水泥。如果 每平方米要用水泥 20 千克,一共要用多少千克水泥? (五) 课后练习 一、圆柱体积 1、求下面各圆柱的体积。 (1)底面积 0.6 平方米,高 0.5 米 (2)底面半径是 3 厘米,高是 5 厘米。 (3)底面直径是 8 米,高是 10 米。 (4)底面周长是 25.12 分米,高是 2 分米。 2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的 4/7。第一个圆柱的体积是 24 立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米? 3、在直径 0.8 米的水管中,水流速度是每秒 2 米,那么 1 分钟流过的水有多少立方米? 4、牙膏出口处直径为 5 毫米,小红每次刷牙都挤出 1 厘米长的牙膏。这支牙膏可用 36 次。该 品牌牙膏推出的新包装只是将出口处直径改为 6 毫米,小红还是按习惯每次挤出 1 厘米长的 牙膏。这样,这一支牙膏只能用多少次? 5、一根圆柱形钢材,截下 1.5 米,量得它的横截面的直径是 4 厘米。如果每立方厘米钢重 7.8 克,截下的这段钢材重多少千克?(得数保留整千克数。) 6、把一个棱长 6 分米的正方体木块,削成一个最大的一圆柱体,这个圆柱的体积是多少立方分 米? 7、右图是一个圆柱体,如果把它的高截短 3 厘米,它的表面积减少 94.2 平方厘米。这个圆柱 体积减少多少立方厘米? 二、圆锥体积 1、选择题。 (1)一个圆锥体的体积是 a 立方米,和它等底等高的圆柱体体积是( ) ① 3 1 a 立方米 ② 3a 立方米 ③ 9 立方米 (2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是 6 立方米,圆锥体体积是( )立 方米 ① 6 立方米 ② 3 立方米 ③ 2 立方米 2、判断对错。 (1)圆柱的体积相当于圆锥体积的 3 倍 ………( ) (2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是 2 : 1 ………( ) (3)一个圆柱和圆锥等底等高,体积相差 21 立方厘米,圆锥的体积是 7 立方厘米 ………( ) 3、填空 (1)一个圆柱体积是 18 立方厘米,与它等底等高的圆锥的体积是( )立方厘米。 (2)一个圆锥的体积是 18 立方厘米,与它等底等高的圆柱的体积是()立方厘米。 (3)一个圆柱与和它等底等高的圆锥的体积和是 144 立方厘米。圆柱的体积是( )立方 厘米,圆锥的体积是( )立方厘米。 4、求下列圆锥体的体积。 (1)底面半径 4 厘米,高 6 厘米。 (2)底面直径 6 分米,高 8 厘米。 (3)底面周长 31.4 厘米,高 12 厘米。 5、一个圆锥形沙堆,高是 1.5 米,底面半径是 2 米,每立方米沙重 1.8 吨。这堆沙约重多少吨? 6、一个近似圆锥形的麦堆,底面周长 12.56 米,高 1.2 米,如果每立方米小麦重 750 千克,这 堆小麦重多少千克? 7、一个长方体容器,长 5 厘米,宽 4 厘米,高 3 厘米,装满水后将水全部倒入一个高 6 厘米的 圆锥形的容器内刚好装满。这个圆锥形容器的底面积是多少平方厘米? (六) 主要内容 比例的意义和基本性质 考点分析 1、把一个图形按一定比放大或缩小,就是把它的每条边按一定的比放大或缩小。 2、表示两个比相等的式子叫做比例。 3、组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内 项。 4、在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。 5、根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个未知项。 求比例的未知项,叫做解比例。 典型例题 例 1、(把图形按某个比相应放大或缩小,形状没有改变,只是大小变了) A B C (1)长方形 A 的长是 1.5 厘米,宽是 1 厘米;长方形 B 的长是 3 厘米,宽是 2 厘米。这两个长 方形的长有什么关系?宽呢? (2)如果要把长方形 A 按 1:2 的比缩小,长和宽应是原来的几分之几?各是多少? 例 2、(根据指定的比,将图形按要求放大或缩小) 先按 3:2 的比画出长方形 A 放大后的图形 B,再按 1:2 的比画出长方形 A 缩小后的图形 C。(1) 图 B 的长、宽各是几格?(2)图 C 呢?(3)观察这三幅图形,你有什么发现? A B C 例 3、(将两个相等比写成一个等式) 图 B 是由图 A 放大后得到的,你能分别写出这两幅图中各自的长与宽的比吗?比较写出的两个 比,你有什么发现? B A 3 厘米 6 厘米 4 厘米 8 厘米 例 4、(认识比例)下面哪几组中的两个比能组成比例,把组成的比例写下来。 (1) 5 :6 和 15 :18 (2) 0.2 :0.1 和 3 :1 (3) 2 1 : 3 1 和 1.2 :0.8 (4) 6 :2 和 8 3 : 8 1 例 5、(比例的各部分名称和比例的基本性质) 一台织布机 3 小时织布 3.6 米,4 小时织布 4.8 米。你能根据数量间的关系写出比例吗? 例 6、(比例基本性质的应用)根据 2 × 7 = 1.4 × 10 这个等式写出几个比例。 例 7、(按比例放大的含义) 王叔叔在电脑上将下面的图片按比例放大,放大后的图片的长是 12.5 厘米,你有什么发现? 4 厘米 5 厘米 例 8、(解比例)上图中宽是多少厘米? 课后练习 1、一张长方形图片,长 12 厘米,宽 9 厘米。按 1 : 3 的比缩小后,新图片的长是( )厘 米,宽是( )厘米,这张图片( )不变,大小( )。 2、一块正方形的花手帕,边长 10 厘米,将其按( )的比放大后,边长变为 30 厘米。 3、按 2 : 1 的比画出平行四边形放大后的图形,按 1 : 3 的比画出长方形缩小后的图形。 4、应用比例的意义,判断下面哪一组中的两个比可以组成比例? 6∶10 和 9∶15 20∶5 和 4∶1 5∶1 和 6∶2 5、在 2∶5、12∶0.2、310∶15 三个比中,与 5.6∶14 能组成比例的一个比是( )。 6、在比例里,两个( )的积和两个( )积相等。 7、如果 A×3=B×5,那么 A∶B= ( ) ∶ ( )。 8、从 6、24、20、18 与 5 这五个数中选出四个数组成一个比例是: ( ) ∶ ( ) = ( ) ∶ ( )。 9、根据 3×8 = 4×6 写成的比例是( )、( )或( )。 10、甲数的 25% 等于乙数的 75%,那么甲数与乙数的比是( )∶( )。 13、解比例 ⅹ∶3 = 7 8 ∶1 4 9 x = 4.5 0.8 1 6 ∶ 2 5 = 1 2 ∶x 3 4 ∶ x = 3∶12 3 8 ∶ x = 5%∶0.6 1.3 18 = x 3.6 14、在一个比例里,两个外项的积是 30,已知一个内项是 10,另一个内项是( )。 (七) 主要内容 比例尺、面积变化、确定位置 考点分析 1、图上距离和实际距离的比,叫做这幅图的比例尺。 2、比例尺 = 实际距离 图上距离 ,比例尺有两种形式:数值比例尺和线段比例尺。 3、把一个平面图形按照一定的倍数(n)放大或缩小到原来的几分之一( n 1 )后,放大(或缩 小)后与放大(或缩小)前图形的面积比是 n²:1(或 1:n²)。 4、知道 了物体的方向和距离,就能确定物体的位置。 5、根据物体的位置,结合比例尺的相关知识,可以在平面图上画出物体的位置。画的时候先按 方向画一条射线,在根据图上距离找出点所在的位置。 6、描述行走路线要依次逐段地说,每一段都应说出行走的方向与路程。 典型例题: 例 1、(认识比例尺) 王伯伯家有一块长方形的菜地,长 40 米,宽 30 米。把这块菜地按一定的比例缩小,画在平面 图上长 4 厘米,宽 3 厘米。你能分别写出菜地长、宽的图上距离和实际距离的比吗? 例 2、(对比例尺的理解及比例尺的两种表示方法) 比例尺 1:1000 表示图上距离是实际距离的几分之几?实际距离是图上距离的多少倍?图上 1 厘 米表示实际距离多少米? 例 3、一个手表零件长 2 毫米,画在一幅图上长 4 厘米,这幅图的比例尺是多少? 例 4、(根据比例尺求图上距离或实际距离) 在比例尺是 60000 1 的地图上,量得甲、乙两地的距离是 2.5 厘米。两地的实际距离是多少米? 例 5、(平面图形按照一定的比放大后,面积扩大了比的平方倍) 下面的大长方形是由一个小长方形按比例放大后得到的图形。分别量出它们的长和宽,算算大 长方形与小长方形面积的比是几比几。 例 6、(认识北偏东(西)若干度、南偏东(西)若干度等方向) 如图,一辆汽车向正北方向行驶,你能说出商场和书店分别在汽车的什么方向吗? N 商场 北 45º 60º 书店 0 3 6 9 千米 汽车 例 7、(知道了物体的方向和距离,才能确定物体的具体位置) 量出上图中书店到汽车的图上距离,根据比例尺算一算,书店在汽车北偏东 60º方向的多少千米 处?商场呢? 例 8、(辨析)书店在汽车的北偏东 60º方向,表示汽车也在书店的北偏东 60º方向。 例 9、(根据给定的方向和距离,有序地确定物体的具体位置) 海面上有一座灯塔,灯塔北偏西 30º方向 30 千米处是凤凰岛。 N 北 W 西 东 E 灯塔 0 10 20 30 千米 南 S 你能在图上指出凤凰岛大约在什么位置吗? 例 10、(用方向和距离描述简单的行走路线) 下图是某市旅游 1 号车行驶的线路图,请根据线路图填空。 (1)旅游 1 号车从起点站出发,向( )行驶到达青水公园,再向( )偏( )( ) 的方向行( )千米到达抗战纪念碑。 (2)由绿博园向南偏( )( )的方向行( )千米到达购物中心,再向北偏( ) ( )的方向行( )千米到达人民公园。 课后练习 1、说出下面各比例尺表示的意思。 1∶40000 2、判断: ①小华在绘制学校操场平面图时,用 20 厘米的线段表示地面上 40 米的距离, 这幅图的比例尺为 1︰2。 ┈┈┈┈ ( ) ②某机器零件设计图纸所用的比例尺为 1︰1, 说明了该零件的实际长度与图上是一样的 ┈┈┈┈ ( ) ③一幅图的比例尺是 6︰1,这幅图所表示的实际距离大于图上距离。┈┈┈ ( ) 3、选择: ①如果某图纸所用的比例尺小于 1,那么这幅图所表示的图上距离( )实际距离。 A.小于 B.大于 C.等于 ②学校操场长 100 米,宽 60 米,在练习本上画图,选用( )作比例尺较合适。 A.1︰20 B.1︰2000 C.1︰200 4、一幅地图的线段比例尺是 ,这幅图上 3 厘米表示实际距离多少千米? 5、 一种精密零件,画在图上是 12 厘米,而实际的长度是 3 毫米。求这幅图的比例尺。 6、英华小学有一块长 120 米、宽 80 米的长方形操场,画在比例尺为 1 :4000 的平面图上,长和宽 各应画多少厘米? 7、在比例尺为 1 :200000 的一幅地图上, A 城和 B 城相距 5 厘米,两城实际相距多少千米? 8、 一幅地图的线段比例尺是: 0 40 80 120 160 千米,甲乙两城在 这幅地图上相距 18 厘米,两城间的实际距离是多少千米?丙丁两城相距 660 千米,在这幅地图上两 城之间的距离是多少厘米? 9、在一幅比例尺为 1:500 的平面图上量得一间长方形教室的长是 3 厘米,宽是 2 厘米。 (1)求这间教室的图上面积与实际面积。 (2)写出图上面积和实际面积的比。并与比例尺进行比较。 10、下图是按 1︰50000 的比例尺绘出的方位图。说一说商店、公园、电影院的位置。 电影院 ●30º ● ● 40º 广场 公园 ● 商店 (1)公园在广场的东面( )千米处。 (2)电影院在广场的( )偏( )( )方向( )千米处。 (3)商店在广场的( )。 11、小明家在百货商场的北偏西 40°方向 2500 米处,图书馆在农业银行东偏南 40°方向 1500 米处。 下面是小明坐出租车从家去图书馆的路线图。已知出租车在 3 千米以内(含 3 千米)按起步价 9 元计算,以后每增加 1 千米车费就增加 2 元。请你按图中提供的信息算一算,小明一共要花多少 元出租车费? (八) 主要内容 正比例和反比例 考点分析 1、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的比 的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。 如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样 的式子来表示: x y = K(一定)。 2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。对照图像,能根据一种量 的值,估计另一种量相对应的值。 3、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的乘 积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。 如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的 式子来表示:xy = K(一定)。 4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没 有上述两种关系,这两个变量不成比例。 典型例题 例 1、(正比例的意义)一列火车行驶的时间和路程如下表。这两种量有什么关系? 时间/时 1 2 3 4 5 6 …… 路程/千米 120 240 360 480 600 720 …… 例 2、(判断是否成正比例) 练习本的单价一定,买练习本的数量和总价是不是成正比例?为什么? 例 3、(正比例的图像)磁悬浮列车匀速行驶时,路程与时间的关系如下。 时间/分 1 2 3 4 5 6 7 …… 路程/千米 7 14 21 28 35 42 49 …… (1)图中的点 A 表示时间为 1 分钟时,磁悬浮列车驶过的路程为 7 千米。请你试着描出其他各 点。 (2)连接各点,它们在一条直线上吗? (3)根据图像判断,列车运行 2 分半钟时,行驶的路程是多少千米?行驶 30 千米大约需要几 分钟? 路程/千米 42 35 28 21 14 7 ●A 0 1 2 3 4 5 6 7 时间/分 例 4、(辨析)圆的周长和直径成正比例,圆的面积和半径成正比例? 例 5、(反比例的意义) 下表是王师傅加工一批零件时,每小时加工零件个数随时间变化的情况。这两种量有什么关系? 每小时加工零件的个数/个 20 30 40 60 80 …… 加工的时间/时 12 8 6 4 3 …… 例 6、(判断是否成反比例) 总产量一定,每公顷的产量和公顷数是不是成反比例?为什么? 例 7、(辨析)和一定,一个加数和另一个加数成反比例。 例 8、(综合题 1) (1)长方形的面积一定,长和宽成反比例吗?为什么? (2)长方形的周长一定,长和宽成反比例吗?为什么? 例 9、(综合题 2) 分别说明大米的总千克数、每天吃的千克数和天数这三种量中,每两种量的比例关系。 (1)大米的总千克数一定,每天吃的千克数和天数; (2)每天吃的千克数一定,大米的总千克数和天数; (3)天数一定,大米的总千克数和每天吃的千克数。 课后练习 1、仔细观察每张表格,思考表格中两种量之间有关系吗?有什么关系?为什么? 表格 1 数量/本 1 3 6 8 10 20 …… 总价/元 4 12 24 32 40 80 …… 表格 2 单价/元 1.5 2 3 4 5 6 …… 总价/元 6 8 12 16 20 24 …… 表格 3 用 60 元钱购买笔记本,笔记本的单价和可以购买的数量如下表: 单价/元 1.5 2 3 4 5 6 …… 数量/本 40 30 20 15 12 10 …… 2、用一批纸装订练习本,每本 25 页,可以装订 400 本。如果要装订 500 本,每本有 X 页。 题中( )量一定,关系式:( )○( )=( )(一定),( )和( )成( ) 比例。 3、一间会客室地面用边长 0.3 米的正方形地砖铺,需要 640 块。如果改用边长 0.4 米的正方形地砖, 需要 Y 块。 题中( )量一定,关系式:( )○( )=( )(一定),( )和( ) 成( )比例。 4、在圆柱的侧面积、底面周长、高这三种量中 当底面周长一定时,( )与( )成( )比例; 当高一定时,( )与( )成( )比例; 当侧面积一定时,( )与( )成( )比例。 5、在被除数、除数、商这三种量中, 当( )一定时,( )与( )成正比例; 当( )一定时,( )与( )成反比例; 6、当 a × b = c( a、b、c 为三种量,且均不为 0)。 ( )一定,( )与( )成( )比例; ( )一定,( )与( )成( )比例; ( )一定,( )与( )成( )比例; 7、判断。 (1)、工作总量一定,工作效率和工作时间成反比例。( ) (2)、图上距离和实际距离成正比例。( ) (3)、X 和 Y 表示两种变化的相关联的量,同时 5X-7Y=0,X 和 Y 不成比例。( ) (4)、分数的大小一定,它的分子和分母成正比例。 ( ) (5)、在一定的距离内,车轮周长和它转动的圈数成反比例。 ( ) (6)、两种相关联的量,不成正比例,就成反比例。 ( ) (7)订阅《小学数学评价手册》的份数与所需钱数成正比例。 ( ) (8)在 400 米赛跑中,跑步的速度和所用时间成反比例。 ( ) (9)工作总量一定,已完成的量和未完成的量成反比例。 ( ) (10)正方体的棱长和体积成正比例。 ( ) (11)被除数一定,除数和商成反比例。 ( ) (12)圆的周长和它的直径成正比例。 ( ) 8、判断下面每题中的两种量是不是成比例,如果成比例,成什么比例。 (1)、装配一批电视机,每天装配台数和所需的天数( )。 (2)、正方形的边长和周长( )。 (3)、水池的容积一定,水管每小时注水量和所用时间( )。 (4)、房间面积一定,每块砖的面积和铺砖的块数( )。 (5)、在一定时间里,加工每个零件所用的时间和加工零件的个数( )。 (6)、在一定时间里,每小时加工零件的个数和加工零件的个数( )。 9、思考:明明三岁时体重 12 千克,十一岁时体重 44 千克。于是小张就说:“明明的体重和身高成 正比例。”你认为小张的说法对吗?为什么? 10、某造纸厂每小时造纸 1.5 吨,2 小时、3 小时┈┈各造纸多少吨? (1)把下表填写完整。 造纸时间/时 1 2 3 4 …… 造纸吨数/吨 1.5 …… (2)根据表中的数据,在下图中描出造纸时间和造纸吨数对应的点,再把它们连起来。 吨数/吨 6 5 4 3 2 1 0 1 2 3 4 5 6 7 时间/时 (3)造纸吨数与造纸时间成正比例吗?为什么? (4)根据图像判断, 5 小时造纸多少吨? (九) 教学内容: 期中复习及考前模拟 复习要点: (一)数与代数 1、百分数的应用 百分数的应用是在六年级(上册)认识百分数的基础上编排的,是本册教材的重点内容 之一。要联系实际解决一些求一个数比另一个数多(或少)百分之几的问题,解决较简单的 有关纳税、利息、折扣的问题,解决已知一个数的百分之几是多少,求这个数的问题。通过 这些内容的教学,能让学生进一步理解百分数的意义,学会在日常生活中应用百分数。 2、比例的有关知识 比例的知识有比例的意义、比例的基本性质和解比例。这些知识有助于理解图形的放大与缩 小,能用来解决有关比例尺的问题。 3、成正比例和成反比例的量 教学正比例和反比例,着重理解正比例的意义和反比例的意义,让学生在现实的情境中作出 相应的判断。根据《标准》的精神,教材适当加强了正比例关系图像的教学,不再安排解答 正比例或反比例的应用题。 (二)空间与图形 1、圆柱和圆锥 圆柱与圆锥是本册教材的又一个重点内容,包括圆柱和圆锥的形状特征,圆柱的表面积 及计算方法,圆柱和圆锥的体积及计算方法等知识。 2、图形的放大或缩小 图形的放大和缩小是小学数学新增加的教学内容,让学生初步了解图形可以按一定的比 例发生大小变换。这个内容安排在第三单元里,结合比例的知识进行教学。 3、确定位置等内容 确定位置也是新增的教学内容,在初步认识方向的基础上,用“北偏东几度”“南偏西 几度”的形式量化描述物体所在的具体方向,还要联系比例尺的知识,用“距离多少”的形 式描述物体所在的位置。 知识点梳理 (一)数与代数 1、百分数的应用 (1)求一个数比另一个数多(少)百分之几的实际问题 ①要点:一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个 数 ②例题:六年级男生有 180 人,女生有 160 人,男生比女生多百分之几?女生比男生少百 分只几? (2)纳税问题 ①要点:应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率, 应纳税额 = 收入 × 税率 ②例题:张强编写的书在出版后得到稿费 1400 元,稿费收入扣除 800 元后按 14%的税率缴 纳个人所得税,张强应该缴纳个人所得税多少元? (3)利息问题 ①要点:存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息 占本金的百分率叫做利率。税前应得利息 = 本金 × 利率 × 时间 ②例题:叔叔今年存入银行 10 万元,定期二年,年利率 4.50% ,二年后到期,扣除利息税 5% ,得到的利息能买一台 6000 元的电脑吗? (4)有关折扣问题 ①要点:几折就是十分之几,也就是百分之几十。商品现价 = 商品原价 × 折数。 ②例题:一种衣服原价每件 50 元,现在打九折出售,每件售价多少元? 例题:一种衣服现在打九折出售,现在售价是 45 元,每件的原价是多少元? (5)列方程解稍复杂的百分数实际问题 ①要点:解答稍复杂的百分数应用题和稍复杂的分数应用题的解题思路、解题方法完全相 同;解答“已知比一个数多(少)百分之几的数是多少,求这个数”的实际问题, 可以根据数量间的相等关系列方程求解;或者根据除法的意义,直接解答。 ②例题:果园里的梨树和苹果树共有 360 棵,其中的苹果树的棵树是梨树的棵树的 20%。 苹果树和梨树各有多少棵? 例题:某工厂六月份用煤 60 吨,六月份比五月份少用煤 25%,五月份用煤多少吨? 2、比例的有关知识 (1)比例的意义 ①要点:表示两个比相等的式子叫做比例。 ②例题:应用比例的意义判断 6.4 : 4 和 9.6 : 6 能否组成比例? (2)比例的基本性质 ①要点:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫 做比例的内项;在比例里,两个外项的积等于两个内项的积。这叫做比例的基本 性质。 ②例题: 3 :8 = 18 :48 3 × 48 = 8 × 18 内项 外项 例题:运用比例的基本性质判断 3.6 :1.8 和 0.5 :0.25 能否组成比例? 例题:从 12 的因数中任意选出 4 个数,再组成 8 个比例式。 (3)解比例 ①要点:根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个 未知项。求比例的未知项,叫做解比例。 ②例题:3 : 8 = ⅹ : 40 x 9 = 8.0 5.4 (4)比例尺 ①要点:图上距离和实际距离的比,叫做这幅图的比例尺。 比例尺 = 实际距离 图上距离 ,比例尺有两种形式:数值比例尺和线段比例尺。 ②例题:在一幅某乡农作物布局图上,20 厘米表示实际距离 16 千米。求这幅图的比例尺。 例题:说出下面比例尺表示的意思。 例题:在一幅比例尺是 1:500000 的地图上,量得甲、乙两城的距离是 12.5 厘米。甲、乙两城 实际相距多少千米? (5)面积变化 ①要点:把一个平面图形按照一定的倍数(n)放大或缩小到原来的几分之一( n 1 )后,放大(或 缩小)后与放大(或缩小)前图形的面积比是 n²:1(或 1:n²)。 ②例题:下面的大长方形是由一个小长方形按比例放大后得到的图形。分别量出它们的长和宽, 算算大长方形与小长方形面积的比是几比几。 3、成正比例和成反比例的量 (1)正比例的意义和图像 ①要点:两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两 个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关 系叫做正比例关系。 如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可 以用这样的式子来表示: x y = K(一定)用“描点法”可以得到正比例的图像,正 比例的图像是一条直线。对照图像,能根据一种量的值,估计另一种量相对应的值。 ②例题:仔细观察下表,思考表格中两种量之间有关系吗?有什么关系?为什么? 表格 1 数量/本 1 3 6 8 10 20 …… 总价/元 4 12 24 32 40 80 …… 例题:在圆柱的侧面积、底面周长、高这三种量中 当( )一定时,( )与( )成正比例; 当( )一定时,( )与( )成正比例。 例题:某造纸厂每小时造纸 1.5 吨,2 小时、3 小时┈┈各造纸多少吨? 造纸时间/时 1 2 3 4 …… 造纸吨数/吨 1.5 …… 根据表中的数据,在下图中描出造纸时间和造纸吨数对应的点,再把它们连起来。 吨数/吨 6 5 4 3 2 1 0 1 2 3 4 5 6 7 时间/时 造纸吨数与造纸时间成正比例吗?为什么? 根据图像判断,5 小时造纸多少吨? (2)反比例的意义 ①要点:两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个 数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。 如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可 以用这样的式子来表示:xy = K(一定)。 ②例题:仔细观察下表,思考表格中两种量之间有关系吗?有什么关系?为什么?用 60 元钱购 买笔记本,笔记本的单价和可以购买的数量如下表: 单价/元 1.5 2 3 4 5 6 …… 数量/本 40 30 20 15 12 10 …… (二)空间与图形 1、圆柱和圆锥 (1)圆柱和圆锥的特征 圆柱 圆锥 底面 两个底面完全相同,都 是圆形。 一个底面,是圆形。 侧面 曲面,沿高剪开,展开 后是长方形。 曲面,沿顶点到底面圆周上的一 条线段剪开,展开后是扇形。 高 两个底面之间的距离, 有无数条。 顶点到底面圆心的距离,只有一 条。 (2)圆柱的表面积和体积 ①要点:圆柱的侧面积 = 底面周长 × 高 圆柱的表面积 = 侧面积 + 底面积 × 2 圆柱所占空间的大小是圆柱的体积,圆柱的体积(容积) = 底面积 × 高,用含 有字母的式子表示是:V = sh 或者 V = лr²h 。 ②例题:用铁皮制作一个圆柱形烟囱,要求底面直径是 3 分米,高是 15 分米,制作这个烟 囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米) 例题:一个圆柱形蓄水池,底面周长是 25.12 米,高是 4 米,将这个蓄水池四周及底部 抹上水泥。如果每平方米要用水泥 20 千克,一共要用多少千克水泥? 例题:在直径 0.8 米的水管中,水流速度是每秒 2 米,那么 1 分钟流过的水有多少立方 米? (3)圆锥的体积 ①要点:圆锥所占空间的大小是圆锥的体积,圆锥的体积是与它等底等高的圆柱体积的三 分之一。即 V = 3 1 sh 或者 V = 3 1 лr²h 。 ②例题:一个圆锥体的体积是 a 立方米,和它等底等高的圆柱体体积是( ) 例题:把一段圆钢切削成一个最大的圆锥体,圆柱体体积是 6 立方米,圆锥体体积是 ( )立方米 例题:一个圆锥形沙堆,高是 1.5 米,底面半径是 2 米,每立方米沙重 1.8 吨。这堆沙约 重多少吨? 2、图形的放大或缩小 ①要点:把一个图形按一定比放大或缩小,就是把它的每条边按一定的比放大或缩小。 ②例题:一张长方形图片,长 12 厘米,宽 9 厘米。按 1 : 3 的比缩小后,新图片的长是( ) 厘米,宽是( )厘米,这张图片( )不变,大小( )。 例题:一块正方形的花手帕,边长 10 厘米,将其按( )的比放大后,边长变为 30 厘米。 3、确定位置等内容 ①要点:知道了物体的方向和距离,就能确定物体的位置。 根据物体的位置,结合比例尺的相关知识,可以在平面图上画出物体的位置。画的时 候先按方向画一条射线,在根据图上距离找出点所在的位置。 描述行走路线要依次逐段地说,每一段都应说出行走的方向与路程。 ②例题:下图是按 1︰50000 的比例尺绘出的方位图。说一说商店、公园、电影院的位置。 电影院 ●30º ● ● 40º 广场 公园 ● 商店 公园在广场的东面( )千米处。 电影院在广场的( )偏( )( )方向( )千米处。 商店在广场的( )。 例题:下图是某市旅游 1 号车行驶的线路图,请根据线路图填空。 旅游 1 号车从起点站出发,向( )行驶到达青水公园,再向( )偏( ) ( )的方向行( )千米到达抗战纪念碑。 由绿博园向南偏( )( )的方向行( )千米到达购物中心,再向北偏( ) ( )的方向行( )千米到达人民公园。 课后练习 一、填空。 1、( )÷15=0.8=( )%=( )成 2、篮球个数是足球的 125%,篮球比足球多( )%。 3、一个圆锥的体积是 76 立方厘米,底面积是 19 平方厘米。这个圆锥的高是( )厘米。 4、如果 3a=4b,那么 a : b = ( ):( ) 。 5、 一个直角三角形中,两个锐角度数的比是 3 : 2 ,这两个锐角分别是( )度、( )度。 6、 12 的约数中可以选出 4 个数组成一个比例,请你写出比值不同的两组:( )、 ( )。 7、 一个比例里,两个外项正好互为倒数,其中一个内项是 2.5,另一个内项是( )。 8、一个圆柱的底面半径为 2 厘米,侧面展开后正好是一个正方形,圆柱的体积是( )立方厘 米。 9、一个长为 6 厘米,宽为 4 厘米的长方形,以长为轴旋转一周,将会得到一个底面直径是( ) 厘米,高为( )厘米的( )体,它的体积是( )立方厘米。 10、 如左图所示,把一个高为 10 厘米的圆柱切成若干等分,拼成一个近 似的长方体。如果这个长方体的底面积是 50 平方厘米,那么圆柱体 积是( )立方厘米 二、选择。 1、圆的面积和它的半径 . A、成正比例 B、成反比例 C、不成比例 2、下列说法正确的有 。 A、表示两个比相等的式子叫做比例。 B、互质的两个数没有公约数。 C、分子一定,分数值和分母成反比例。D、圆锥的体积等于圆柱体积的 3 1 。 3、圆柱的底面半径扩大 2 倍,高不变。它的底面积扩大 倍,侧面积扩 大 倍,体积扩大 倍。A 2 、 B 4 、 C 8 、 D 16 4.六(2)班人数的 40%是女生,六(3)班人数的 45%是女生,两班女生人数相等。那么六(2) 班的人数_____六(3)班人数。 A. 小于 B. 等于 C .大于 D.都不是 5.把一团圆柱体橡皮泥揉成一个与它等底的圆锥体,高将 _______ A.扩大 3 倍 B.缩小 3 倍 C.扩大 6 倍 D.缩小 6 倍 三、计算。 1、用递等式计算。(12 分) 0.16+4÷( 8 3 - 4 1 ) 1.7+3.98+5 10 3 4.8×3.9+6.1×4 5 4 2、解方程。(6 分) 宜陵农业银行(定期)储蓄存单帐号×××××× 币种人民币 金额(大写)五千元 小写¥5000 元 存入期 存期 年利率 起息日 到期日 2005年3月20 日 3 年 5.22% 2003年4月1 日 2008年3月20日 2X+3×0.9=24.7 0.3 :x=17 :51 X 2.3 =0.5 四、画一画。(5 分) 学校的操场长 150 米,宽 60 米,请你根据比例尺在下面的空白处画出操场的平面图。(并请你 标明比例尺及长宽的厘米数) (1:3000) 五、解决实际问题(25 分) 1、下面是张大爷的一张存单,如果到期要交 5%的利息税,他的存款到期时实际可得多少元利息? 2、一个圆柱形的无盖水桶,底面半径 4 分米,高 6 分米,至少需要用多少平方分米的铁皮?(用进 一法取近似值,得数保留整数);如果用来装水,可以装多少千克水?(每升水重 1 千克) 3、一条公路已经修了它的 5 2 ,再修 300 米,就修好这条公路的一半。这条公路长多少米? 4.有一个近似的圆锥形砂堆重 3.6 吨,测得高是 1.2 米,如果每吨砂的体积是 0.6 立方米。这堆砂 的底面积是多少平方米? 5、用塑料绳捆扎一个圆柱形的蛋糕盒(如下图),打结处正好是底面圆心,打 结用去绳长 25 厘米。 (1)、扎这个盒子至少用去塑料绳多少厘米? (2)、在它的整个侧面贴上商标和说明,这部分的面积至少多少平方厘米? (十) 期中试卷 一、填空。(24 分,每题 2 分。) 1、24÷( )=( ):24 = 4 3 =( )% =( )折 =( )(填小数)。 2、8 厘米是 16 分米的( )% 100 千克比 80 千克多( )% 12 米比( )少 20% ( )比 16 少 40% 3、一件篮球打九折出售后,售价 72 元,原价( )元。 4、在一个比例里,已知两个外项互为倒数,其中一个内项是最小的合数,另一个内项是( )。 5、把 4 3 、 6 5 、 8 5 和 1 组成一个比例是( )。 6、已知 6x=4y,x 和 y 成( )比例,已知 3 x = y 6 ,x 和 y 成( )比例。 7、一个圆锥的体积是 32 立方厘米,高是 4 厘米,底面积是( )。 8、把边长是 3 厘米的正方形按 4 :1 扩大后,扩大前后图形之间的面积比是( )。 9、一个圆柱体和一个圆锥体体积相同,底面积也相同,如果圆柱的高是 12 厘米,圆锥的高是( ) 厘米,如果圆锥的高是 12 厘米,圆柱的高是( )厘米。 10、比例尺 10 :1,表示图上距离 1 厘米相当于实际距离( )厘米。 11、一个圆柱侧面展开是一个周长为 24 厘米的正方形,圆柱的侧面积是( )平方厘米。 12、李叔叔写了一部长篇小说,除 800 元以外,按 14%交纳了 532 元个人所得税,李叔叔这次共 得了( )元稿费。 二、判断。(每题 1 分,共 5 分。) 1、两种相关联的量不是正比例,就是反比例。 ( ) 2、一种商品先涨价 5%,后又降价 5%,又回到了原价。 ( ) 3、一个圆柱的体积等于圆锥体积的 3 倍,它们一定等底等高。 ( ) 4、如果两个圆柱体的体积相等,那么它们的侧面积也相等。 ( ) 5、如果 3a=4b,那么 a : b=4 :3。 ( ) 三、选择。(每空 1 分,共 6 分。) 1、做一个铁皮烟囱需要多少铁皮,就是求烟囱的( ) A、表面积 B、体积 C、侧面积 2、①根据我国《国旗法》的规定,国旗的长和宽( )。 ②圆的面积和半径( )。 A、成正比例 B、成反比例 C、不成比例 3、一个圆锥和一个圆柱等底等高,圆柱体积比圆锥的体积大( ) A、 3 1 B、2 倍 C 、 3 2 4、根据 4×6=3×8,可以写出( )个不同的比例。 A、8 B、4 C、2 5、12 个铁圆锥,可以熔铸成等底等高的圆柱体的个数是( ) A、6 B、4 C、18 四、计算(共 26 分)。 1、直接写得数。(每小题 0.5 分) 1047-998= 4 1 + 6 1 = 3.7+1.9= 2÷14+ 7 6 = 1÷100%= 0.1+9.9×0.1= 12×( 4 1 × 6 1 )= 0.27÷0.3= 2、解方程。(每题 2 分) ① 48 5 x –2= 0.5 ② 18 1 : 9 2 = x : 13 6 ③ 1.8 x = 8.10 4 ④ X:12 = 4 7 :2.8 3、用递等式计算(能简便计算的要简便计算,每题 2 分) ① 3÷ 7 3 - 7 3 ÷3 ② 20 9 ÷[ 2 1 ×( 3 2 + 5 4 )] ③( 3 1 - 6 1 + 4 1 )×12 ④ 5.7-(1.9-1.3) 4、文字题。(每小题 3 分) ①用 2 除 7 10 的商,减去 7 的倒数,差是多少? ②甲数的 4 3 等于乙数的 5 4 ,如果乙数是 15,甲数是多少? 五、操作题。(第 1 题 4 分,第 2 题 5 分)。 1、下图的比例尺是 4000 1 ,量出图上各数据,求出它的实际占地面积是多少平方米?(量时得数 保留整厘米数) 2、在下图中量出学校到汽车站的图上距离,再据比例尺算出实际距离。 ①学校到汽车站的图上距离是( )厘米 ②汽车站到商场的图上距离是( )厘 ③商场在汽车站的( )偏( ) ( )o 方向 2 千米处,这幅图的比例尺是( )。 ④从学校到汽车站的实际距离是( )千米。 ⑤在汽车站南偏东 45o 方向 1000 米处有一个公园,请在图上画出公园的位置。 六、应用题。(共 30 分)。 1、水结成冰后,体积增加 10%,一块体积是 3.3 立方米的冰,融化成水后体积是多少? 2、一个无盖的铁皮水桶,底面周长是 9.42 平方分米,高 5 分米,做这个水桶至少用了铁皮多少平方 分米?至少能装多少水? 3、组装一批电脑,已装了总数的 40%,剩下的比已装的多 500 台。这批电脑共有多少台? 4、一幅地图的线段比例尺是: 学校 汽车站 商场 小河 商场 0 40 80 120 160 千米,甲乙两城在这幅地图上相距 14 厘米,如果 把它画在比例尺是 1:2800000 的地图上,该画多少厘米? 5、把一个横截面为正方形的长方体木块,削成一个最大的圆锥体,已知圆锥的底面周长是 12.56 厘 米,高 5 厘米,长方体的体积是多少? (十一) 主要内容 解决问题的策略 考点分析 转化能把新颖的问题变成已经认识、已能解决的问题,从而创造性地利用已有的知识,经验。 典型例题 例 1、(运用转化的策略巧算周长)求下面图形的周长。(单位:厘米) 例 2、(将复杂的图形转化成简单的图形后计算面积) 如图 1 是一块长方形草地,长方形的长是 16 米,宽是 10 米。中间有两条道路,一条是长方形, 一条是平行四边形。草地部分的面积有多大? 图 1 图 2 例 3、(辨析)下面图形的周长可以转化成长 15 厘米、宽 9 厘米的长方形来计算, 即周长是(15 + 9)× 2 = 48(厘米)。 例 4、(已知两个量之间的分率关系与它们的和,求这两个量) 学校图书馆购进的科技书的册数是故事书的 7 3 ,购进的科技书和故事书一共 1500 册。购进科技 书多少册? 例 5、(辨析)红花的朵数比蓝花多 7 2 ,蓝花的朵数就比红花少 7 2 。 例 6、(综合题) 小明读一本书,已读的页数是未读页数的 2 3 。他再读 30 页,这时已读的页数 是未读页数的 3 7 。这本书共多少页? 例 7、(综合题) 六(1)班原来女生占全班人数的 9 4 ,新学期转出了 4 名女生,这时女生占全 班人数的 5 2 。六(1)班现在有女生多少人? 课后练习 1、计算下面图形的周长。(单位:厘米) 图 1 图 2 2、有一块长方形菜地,长 16 米,宽 8 米。菜地中间留了两条 2 米宽的路,把菜地平均分成 4 块,每块地的面积是多少平方米?(单位:米) 3、填空。 (1)六年级女生人数是男生人数的 3 2 ,那么男生人数是女生人数的______,女生人数是全班人 数的_____。 (2)白兔的只数比黑兔少 6 1 ,白兔的只数是黑兔的____,黑兔的只数是白兔的____,黑兔的只 数比白兔多____,黑兔的只数占兔子总数的____。 (3)一杯果汁,已经喝了 5 2 ,喝掉的是剩下的____,剩下的是喝掉的_____。 4、白兔和黑兔共有 40 只,黑兔的只数是白兔的 5 3 ,黑兔有多少只? 5、小明看一本故事书,已经看了全书的 7 3 ,还有 48 页没有看。 小明已经看了多少页? 6、修一条长 30 千米的路,已经修的占剩下的 3 2 ,已经修了多少千米? 7、山羊有 120 只,比绵羊少 6 1 ,绵羊有多少只? 8、六年级(1)班的男生占全班人数的 5 2 ,女生有 18 人。男生有多少人? 9、有 3 堆围棋子,每堆 60 枚。第一堆的黑子和第二堆的白子同样多,第三堆有 3 1 白子。这三 堆棋子一共有白子多少枚? (十二) 主要内容 统计 考点分析 1、扇形统计图可以清楚地表示出各部分数量同总数量之间的关系。 2、在一组数据中,出现的最多的数,叫做这组数据的众数。 3、一组数据的中位数,是指这组数据按大小顺序依次排列,处于最中间的那个数;如果正中间 有两个数,中位数就是这两个数的平均数。 4、如果一组数据的众数出现的次数很多,这时的众数具有代表性;如果一组数据里有极端数据, 这时的中位数具有代表性。 典型例题 例 1、(理解扇形统计图表示数据的方式,对扇形统计图进行简单的分析) 看统计图回答问题。 小明家 5 月份支出情况统计图: (1)图中的这个圆表示什么什么?被分成了几部分?每一部分都是什么形状? (2)从图上看,哪项支出最多?哪项支出最少? (3)你还能获得哪些信息? 例 2、(根据扇形统计图进行有关的计算) 如果小明家 5 月份总支出是 1600 元,根据例 1 的统计图,填写下表。 支出总类 食 品 服 装 赡养老人 水电气 文 化 其 他 金额/元 例 3、(辨析)要表示各部分与总数的关系,就选用条形统计图。 例 4、(理解众数的意义,并求一组数据的众数) 江阳电子配件厂第一车间有 12 名工人,5 月份每人的日均生产零件个数是:42、51、46、 44、48、50、51、56、44、48、48、43。找出这组日产量的众数。 例 5、(根据统计表来求众数)某商店销售各种领口尺寸衬衫的情况如下表。 领口尺寸/厘米 38 39 40 41 42 数量/件 13 19 34 15 9 你认为商店应多进哪种衬衣? 例 6、(比较平均数和众数在表示一组数据特征时哪个更合适) 下面是某超市工作人员的月工资。(单位:元) 3000、2000、900、800、750、650、600、600、600、600、500 请分别求出这组数据的平均数和众数,再比较哪个数据更能代表这组数据的特征。 例 7、(辨析) 一组数据的众数只有一个。 例 8、(理解中位数的意义,会求一组数据的中位数) 下面是 9 位同学的体重。(单位:千克) 35、42、30、29、52、44、39、36、33 这组数据的中位数是多少? 例 9、(一组数据的个数是偶数时,中位数就是中间两个数的平均数) 下面是 8 位同学的身高。(单位:厘米) 142、138、145、130、150、145、139、143 这组数据的中位数是多少? 例 10、(辨析)中位数就是一组数据正中间的数。 例 11、(综合题)李玲同学前几次的数学成绩分别是:96 分、98 分、95 分、93 分。但最近一 次的数学成绩是 45 分,原因是考试时她患感冒,正在发烧。请你用一个合理的统计量 来评价李玲的数学学习水平。 例 12、(综合题)某公司的 33 名职工的月工资收入统计如下。 职务 董事长 副董 事长 董事 总经理 经理 管理员 职员 人数 1 1 2 1 5 3 20 工资/元 5500 5000 3500 3000 2500 2000 1500 (1)求该公司职工月工资的平均数、中位数和众数。 (2)你认为用哪个数据更能代表这个公司员工的工资水平?结合此问题谈谈你的看法。 课后练习 1、下面是百花山公园占地分布情况统计图 (1)( )占地面积最大,( )占地面积最小。 (2)山丘占百花山公园的( )﹪。 (3)百花山公园占地 1200 公顷,请填写下表。 占地类型 湖面 山丘 路面 其他 占地面积/公顷 2、下面是小青家 10 月份支出及储蓄情况统计图。 (1)小青家 10 月份的伙食费共花了 800 元,小青家的支出及储蓄总共多少元? (2)请根据扇形统计图,把下表填写完整。 项目 伙食费 购物 水电费 储蓄 其他 费用/元 800 百分比 40﹪ 15﹪ 3、填空。 (1)在 40、16、46、20、40、50、40 这组数据中,众数是( ),中位数是( ),平均数是 ( )。 (2)在 52、60、48、55、71、60、60、58 这组数据中,众数是( ),中位数是( ), 平均数是( )。 (3)下表是某校随机抽查的 20 名八年级男生的身高统计表。 身高/厘米 150 155 160 163 165 168 人 数 1 3 4 4 5 3 在这组数据中,众数是( ),中位数是( ),( )数更能代表这 20 名男生的身高 情况。 4、某鞋店上周销售各种尺码男式皮鞋的情况如下表。 尺码/cm 24 24.5 25 25.5 26 26.5 27 数量/双 4 15 34 48 29 18 5 讨论:假如你是这家鞋店的经理你最关心什么(哪种尺码销售最多)?假如让你去进货,你有 什么想法? 5、这是六(3)班同学的左眼视力情况统计: 5.0 4.9 5.3 5.2 4.7 5.2 4.8 5.1 5.3 5.2 4.8 5.0 4.5 5.1 4.9 5.1 4.7 5.0 4.8 5.1 5.0 4.8 4.9 5.1 4.9 5.1 4.6 5.1 4.7 5.1 5.0 5.1 5.1 4.9 5.0 5.1 5.2 5.1 4.6 5.0 (1)根据上面的数据完成下面的统计表 左眼视力 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 人 数 (2)这组数据中的众数、中位数各是多少?( )数更能代表这个班学生左眼视力的情况。 6、下面是从昆山人才市场获得的甲乙两家公司的员工招聘信息,胡老师有一位亲戚今年正好大 学毕业,他应该去哪家公司应聘呢? 甲公司: 员 工 总经理 副总经理 部门经理 普通职员 人 数 1 2 5 22 月工资/元 5000 4000 3000 2000 乙公司 员 工 总经理 副总经理 部门经理 普通职员 人 数 1 2 5 22 月工资/元 6000 5500 4000 1800 7、出示:下面是四年级一班 10 个女生一分钟跳绳成绩记录单 编号 1 2 3 4 5 6 7 8 9 10 成绩/下 106 99 104 120 107 112 33 102 97 100 这组数据的中位数是多少? 8、出示:下面是第一小组 9 位同学家庭的住房面积。(单位:平方米) 86 84 50 92 87 80 93 43 88 这组数据的平均数和中位数各是多少? 9、出示:一次时装模特大奖赛上,一个模特刚刚表演完,主持人说:下面请评委亮分,“6 分, 8.5 分,8.4 分,8.9 分,8.8 分,8.3 分,8.5 分,8.7 分,8.4 分,8.5 分。去掉一个最高 分,再去掉一个最低分。该选手的最后得分是--------- (1)如果不去掉一个最高分和一个最低分,这位选手平均分是( ) (2)如果去掉一个最高分和一个最低分,这位选手平均分是( ) (3)在 10 个原始得分中,中位数是( ) (4)两种算分的方式哪一种算出的得分更能代表这位选手的水平?

资料: 4.5万

进入主页

人气:

10000+的老师在这里下载备课资料