新锐八年级数学第一学期期末测试卷 1 2014.12.21
(时间:100 分钟;满分:120 分)
一、选择题(本大题共 8 小题,每小题有且只有一个答案正确,每小题 3 分,共 24 分)
题 号 1 2 3 4 5 6 7 8
答 案
1.2 的算术平方根是·············································································( )
A. 2 B.2 C.± 2 D.±2
2.2013 年 12 月 2 日,“嫦娥三号”从西昌卫星发射中心发射升空,并于 12 月 14 日在月球上成功实施软
着陆.月球距离地球平均为 384401000 米,用四舍五入法取近似值,精确到 1000000 米,并用科学计数
法表示,其结果是············································································( )
A.3.84×107 米 B.3.8×107 米 C.3.84×108 米 D.3.8×108 米
3.在实数: 213. , π , 3 ,− 22
7
中,无理数的个数有·································( )
A.1 个 B.2 个 C.3 个 D.4 个
4.在平面直角坐标系中,点 P(3,−5)在··············································· ( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.如图是一个风筝设计图,其主体部分(四边形 ABCD)关于 BD 所在的直线对称,AC 与 BD 相交于点 O,
且 AB≠AD,则下列判断不正确的是···················································· ( )
A.△ABD≌△CBD B.△ABC 是等边三角形
C.△AOB≌△COB D.△AOD≌△COD
6.一次函数 y = kx b ,当 k <0,b<0 时,它的图象大致为······················· ( )
7.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图
案构成一个轴对称图形,那么涂法共有················································ ( )
A.3 种 B.4 种 C.5 种 D.6 种
8.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物
品再另装货物共用 3
4 h,立即按原路以另一速度返回,直至与货车相遇.已知货车的速度为 60km/h,两
车之间的距离 y (km)与货车行驶时间 x (h)之间的函数图象如图所示,现有以下 4 个结论:
①快递车到达乙地时两车相距 120km;
②甲、乙两地之间的距离为 300km;
③快递车从甲地到乙地的速度为 100km/h;
④图中点 B 的坐标为(3 3
4
,75).
其中,正确的结论有·········································································( )
第 7 题
A
B
C
DO
第 5 题
y
xO
y
xO
y
xO O x
y
A B C D
/ hxO
A
B
C
120
3 14 4
/ kmy
第 8 题
A.1 个 B.2 C.3 个 D.4 个
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分)
9.点 P( 2 , 3 )到 x 轴的距离是_____.
10.比较大小:4 3 _____7.(填“>”、“=”、“<”)
11.已知等腰三角形的一个外角是 80°,则它顶角的度数为_____.
12.若直角三角形的两条直角边的长分别是 6 和 8,则斜边上的中线长为_____.
13.如图,在△ABC 中,∠C=90°,AD 平分∠CAB,BC=10cm,BD=6cm,那么 D 点到直线 AB 的距离
是_____cm.
14.在平面直角坐标系中,一青蛙从点 A(−1,0)处向左跳 2 个单位长度,再向下跳 2 个单位长度到点 A′
处,则点 A′的坐标为_____.
15.写出同时具备下列两个条件的一次函数关系式_____.(写出一个即可)
(1) y 随 x 的增大而减小;(2)图像经过点(1,−2).
16.如图,在△ABC 中,AB 的垂直平分线分别交 AB、BC 于点 D、E,AC 的垂直平分线分别交 AC、BC 于
点 F、G,若∠BAC=100°,则∠EAG=_____°.
17.如图,已知直线 y = ax b ,则关于 x 的方程 1ax =b 的解 x =_____.
18.如图,C 为线段 AB 上一动点(不与点 A、B 重合),在 AB 同侧分别作正三角形 ACD 和正三角形
BCE,AE 与 BD 交于点 F,AE 与 CD 交于点 G,BD 与 CE 交于点 H,连接 GH.以下五个结论:
①AE=BD;②GH∥AB;③AD=DH;④GE=HB;⑤∠AFD=60°,一定成立的有_______.(填
序号即可)
三、解答题(本大题共 9 小题,共 76 分,解答要求写出文字说明,证明过程或计算步骤)
19.(本题满分 8 分)
(1)求 x 的值: 24 9x =0; (2)计算: 0 23( 1) 8 ( 2) .
20.(本题满分 6 分)近年来,江苏省实施“村村通”工程和农村医疗卫
生改革,盐都区计划在张村、李村之间建一座定点医疗站 P,张、李
两村座落在两相交公路内(如图所示),医疗站必须满足下列条件:
①使其到两公路的距离相等;
②到张、李两村的距离也相等.
请你利用尺规作图确定 P 点的位置.
(不写作法,保留作图痕迹)
21.(本题满分 6 分)如图,一木杆在离地某处断裂,木杆顶部落 在离木杆底部 8 米处,已知木杆原长 16
米,求木杆断裂处离地面多少米?
A
BC D
第 13 题
A
B C
D
E
F
G
第 16 题
-1 4321
y
xO
1
-1
第 17 题
A BC
D
E
F
G H
第 18 题
张村
李村
8 米 地面
22.(本题满分 6 分)在平面直角坐标系中,已知 A(−1,5)、B(4,2)、C(−1,0)三点.
(1)点 A 关于原点 O 的对称点 A′的坐标为_____,点 B 关于 x 轴的对称点 B′的坐标为_____,
点 C 关于 y 轴的对称点 C′的坐标为_____;
(2)求以(1)中的点 A′、B′、C′为顶点的△A′B′C′的面积.
23.(本题满分 6 分)如图,四边形 ABCD 是梯形,AD∥BC,∠A=90°,BD
=CB,CE⊥BD,垂足为 E.
(1)求证:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE 的度数.
24.(本题满分 10 分)如图,点 E 是∠AOB 的平分线上一点,EC⊥OA,ED⊥
OB,垂足分别是 C、D.
求证:(1)∠EDC=∠ECD;
(2)OC=OD;
(3)OE 是线段 CD 的垂直平分线.
A
B C
D
E
A
B
C
D
E
O
25.(本题满分 10 分)阅读下列一段文字,然后回答下列问题.
已知平面内两点 M( 1x , 1y )、N( 2x , 2y ),则这两点间的距离可用下列公式计算:
MN= 2 2
1 2 1 2x x y y .
例如:已知 P(3,1)、Q(1,−2),则这两点间的距离 PQ= 2 23 1 1 2 = 13 .
特别地,如果两点 M( 1x , 1y )、N( 2x , 2y )所在的直线与坐标轴重合或平行于坐标轴或垂直于坐
标轴,那么这两点间的距离公式可简化为 MN= 1 2x x 或 1 2y y .
(1)已知 A(1,2)、B(−2,−3),试求 A、B 两点间的距离;
(2)已知 A、B 在平行于 x 轴的同一条直线上,点 A 的横坐标为 5,点 B 的横坐标为−1,试求 A、B 两
点间的距离;
(3)已知△ABC 的顶点坐标分别为 A(0,4)、B(−1,2)、C(4,2),你能判定△ABC 的形状吗?
请说明理由.
26.(本题满分 12 分)小华和爸爸上山游玩,爸爸乘电缆车,小华步行,两人相约在山顶的缆车终点会合.已
知小华行走到缆车终点的路程是爸爸乘缆车到山顶的线路长的 2 倍,爸爸在小华出发后 50min 才乘上电
缆车,电缆车的平均速度为 180m/min.设小华出发 x (min)行走的路程为 y (m),图中的折线表示小
华在整个行走过程中 y (m)与 x (min)之间的函数关系.
(1)小华行走的总路程是_____m,他途中休息了_____min;
(2)当 50≤ x ≤80 时,求 y 与 x 的函数关系式;
(3)当爸爸到达缆车终点时,小华离缆车终点的路程是多少?
/my
/minxO 30 50 80
3600
1950
27.(本题满分 12 分)已知△ABC 为等边三角形,点 D 为直线 BC 上的一动点(点 D 不与 B、C 重合),以
AD 为边作等边△ADE(顶点 A、D、E 按逆时针方向排列),连接 CE.
(1)如图 1,当点 D 在边 BC 上时,求证:①BD=CE,②AC=CE+CD;
(2)如图 2,当点 D 在边 BC 的延长线上且其他条件不变时,结论 AC=CE+CD 是否成立?若不成立,
请写出 AC、CE、CD 之间存在的数量关系,并说明理由;
(3)如图 3,当点 D 在边 BC 的反向延长线上且其他条件不变时,补全图形,并直接写出 AC、CE、CD
之间存在的数量关系.
图 1
A
B CD
E
图 2
A
B C D
E
A
B CD
图 3
八年级数学参考答案及评分标准
(阅卷前请认真校对,以防答案有误!)
一、选择题(每小题 3 分,共 24 分)
题号 1 2 3 4 5 6 7 8
答案 A C B D B B C D
二、填空题(每小题 2 分,共 20 分)
9.3. 10.<. 11.100°. 12.5.
13.4. 14.(−3,−2). 15.答案不唯一,如 y = 1x 等.
16.20. 17.4. 18.①②④⑤.
三、解答题(共 76 分)
19.(1) 24x =9,··························································································1 分
2x = 9
4
,························································································2 分
x =± 3
2
.·····················································································4 分
(2)原式=1+2+2···················································································3 分
=5.·························································································4 分
说明:第(1)题答案写成 x = 3
2
扣 1 分;
第(2)题 0( 1) 、 3 8 、 2( 2) 的计算分别给 1 分.
20.作出线段垂直平分线,·············································································· 3 分
作出角平分线.······················································································· 6 分
21.设木杆断裂处离地面 x 米,由题意得···························································· 1 分
2 28x = 2(16 )x .··················································································3 分
解得 x =6······························································································· 5 分
答:木杆断裂处离地面 6 米.····································································· 6 分
22.(1)(1,−5);(4,−2);(1,0).·······························································3 分
(2)S△A′B′C′= 1 5 (4 1)2
=15
2
.········································· 6 分
23.(1)∵AD∥BC,
∴∠ADB=∠EBC.
∵CE⊥BD,
∴∠BEC=90°.
∵∠A=90°,
∴∠A=∠BEC.······················································································1 分
在△ABD 和△ECB 中,
A BEC
ADB EBC
BD CB
,··················································································· 2 分
∴△ABD≌△ECB(AAS).······································································· 3 分
(2)∵BD=CB,∠DBC=50°,
∴∠BDC= 1 (180 )2 DBC = 1 (180 50 )2
=65°.········································4 分
∴在 Rt△CDE 中,∠DCE=90° ∠BDC=90° 65°=25°.······························6 分
24.(1)∵点 E 是∠AOB 的平分线上一点,EC⊥OA,ED⊥OB,
∴ED=EC.··························································································· 3 分
∴∠EDC=∠ECD.················································································· 4 分
(2)∵EC⊥OA,ED⊥OB,
∴∠EDO=∠ECO=90°.··········································································5 分
由(1)知∠EDC=∠ECD,
∴∠EDO ∠EDC=∠ECO ∠ECD,即∠ODC=∠OCD.·····························6 分
∴OC=OD.···························································································7 分
(3)∵OC=OD,∠EOC=∠EOD,
∴OE⊥CD,OE 平分 CD,即 OE 是线段 CD 的垂直平分线.··························10 分
25.(1)AB= 2 21 2 2 3 = 34 .·························································· 3 分
(2)AB= 5 ( 1) =6.·············································································6 分
(3)△ABC 是直角三角形.········································································7 分
理由:∵AB= 2 20 1 4 2 = 5 ,BC= 2 21 4 2 2 =5,
AC= 2 20 4 4 2 = 20 ,
∴AB2+AC2= 2 2( 5) ( 20) =25,BC2=52=25.
∴AB2+AC2=BC2.··················································································9 分
∴△ABC 是直角三角形.········································································· 10 分
26.(1)3600,20.······················································································· 2 分
(2)当 50≤ x ≤80 时,设 y 与 x 的函数关系式为 y = kx b ,根据题意得············3 分
当 x =50 时, y =1950;当 x =80 时, y =3600.········································· 4 分
∴ 50 1950
80 3600
k b
k b
.
解得 55
800
k
b
.······················································································ 6 分
∴ y 与 x 的函数关系式为 y =55 800x .·······················································7 分
(3)缆车到山顶的路线长为 3600÷2=1800(m).··········································8 分
缆车到达终点所需时间为 1800÷180=10(min).·········································· 9 分
爸爸到达缆车终点时,小华行走的时间为 10+50=60(min).························10 分
把 x =60 代入 y = 55 800x ,得 y =55×60 800=2500.····························· 11 分
∴当爸爸到达缆车终点时,小华离缆车终点的路程是 3600 2500=1100(m)····12 分
27.(1)∵△ABC 和△ADE 都是等边三角形,
∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.
∴∠BAC ∠CAD=∠DAE ∠CAD,即∠BAD=∠CAE.·······························1 分
在△ABD 和△ACE 中,
AB AC
BAD CAE
AD AE
,
∴△ABD≌△ACE(SAS).········································································3 分
∴BD=CE.··························································································· 4 分
∵BC=BD+CD,AC=BC,
∴AC=CE+CD.···················································································· 5 分
(2)AC=CE+CD 不成立,
AC、CE、CD 之间存在的数量关系是:AC=CE CD.··································· 6 分
理由:∵AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.
∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.······························ 7 分
在△ABD 和△ACE 中,
AB AC
BAD CAE
AD AE
,
∴△ABD≌△ACE(SAS).········································································8 分
∴BD=CE.··························································································· 9 分
∴CE CD=BD CD=BC=AC,即 AC=CE CD.····································· 10 分
(3)补全图形(如图).··········································································· 11 分
AC、CE、CD 之间存在的数量关系是:AC=CD CE.··································12 分
说明:解答题中,考生若使用其它解法,请参考评分标准酌情给分.
A
B
CD
E