八年级数学上册期末测试题及答案1
加入VIP免费下载

八年级数学上册期末测试题及答案1

ID:639492

大小:568 KB

页数:8页

时间:2021-03-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
新锐八年级数学第一学期期末测试卷 1 2014.12.21 (时间:100 分钟;满分:120 分) 一、选择题(本大题共 8 小题,每小题有且只有一个答案正确,每小题 3 分,共 24 分) 题 号 1 2 3 4 5 6 7 8 答 案 1.2 的算术平方根是·············································································( ) A. 2 B.2 C.± 2 D.±2 2.2013 年 12 月 2 日,“嫦娥三号”从西昌卫星发射中心发射升空,并于 12 月 14 日在月球上成功实施软 着陆.月球距离地球平均为 384401000 米,用四舍五入法取近似值,精确到 1000000 米,并用科学计数 法表示,其结果是············································································( ) A.3.84×107 米 B.3.8×107 米 C.3.84×108 米 D.3.8×108 米 3.在实数: 213.   , π , 3 ,− 22 7 中,无理数的个数有·································( ) A.1 个 B.2 个 C.3 个 D.4 个 4.在平面直角坐标系中,点 P(3,−5)在··············································· ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5.如图是一个风筝设计图,其主体部分(四边形 ABCD)关于 BD 所在的直线对称,AC 与 BD 相交于点 O, 且 AB≠AD,则下列判断不正确的是···················································· ( ) A.△ABD≌△CBD B.△ABC 是等边三角形 C.△AOB≌△COB D.△AOD≌△COD 6.一次函数 y = kx b ,当 k <0,b<0 时,它的图象大致为······················· ( ) 7.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图 案构成一个轴对称图形,那么涂法共有················································ ( ) A.3 种 B.4 种 C.5 种 D.6 种 8.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物 品再另装货物共用 3 4 h,立即按原路以另一速度返回,直至与货车相遇.已知货车的速度为 60km/h,两 车之间的距离 y (km)与货车行驶时间 x (h)之间的函数图象如图所示,现有以下 4 个结论: ①快递车到达乙地时两车相距 120km; ②甲、乙两地之间的距离为 300km; ③快递车从甲地到乙地的速度为 100km/h; ④图中点 B 的坐标为(3 3 4 ,75). 其中,正确的结论有·········································································( ) 第 7 题 A B C DO 第 5 题 y xO y xO y xO O x y A B C D / hxO A B C 120 3 14 4 / kmy 第 8 题 A.1 个 B.2 C.3 个 D.4 个 二、填空题(本大题共 10 小题,每小题 2 分,共 20 分) 9.点 P( 2 , 3 )到 x 轴的距离是_____. 10.比较大小:4 3 _____7.(填“>”、“=”、“<”) 11.已知等腰三角形的一个外角是 80°,则它顶角的度数为_____. 12.若直角三角形的两条直角边的长分别是 6 和 8,则斜边上的中线长为_____. 13.如图,在△ABC 中,∠C=90°,AD 平分∠CAB,BC=10cm,BD=6cm,那么 D 点到直线 AB 的距离 是_____cm. 14.在平面直角坐标系中,一青蛙从点 A(−1,0)处向左跳 2 个单位长度,再向下跳 2 个单位长度到点 A′ 处,则点 A′的坐标为_____. 15.写出同时具备下列两个条件的一次函数关系式_____.(写出一个即可) (1) y 随 x 的增大而减小;(2)图像经过点(1,−2). 16.如图,在△ABC 中,AB 的垂直平分线分别交 AB、BC 于点 D、E,AC 的垂直平分线分别交 AC、BC 于 点 F、G,若∠BAC=100°,则∠EAG=_____°. 17.如图,已知直线 y = ax b ,则关于 x 的方程 1ax  =b 的解 x =_____. 18.如图,C 为线段 AB 上一动点(不与点 A、B 重合),在 AB 同侧分别作正三角形 ACD 和正三角形 BCE,AE 与 BD 交于点 F,AE 与 CD 交于点 G,BD 与 CE 交于点 H,连接 GH.以下五个结论: ①AE=BD;②GH∥AB;③AD=DH;④GE=HB;⑤∠AFD=60°,一定成立的有_______.(填 序号即可) 三、解答题(本大题共 9 小题,共 76 分,解答要求写出文字说明,证明过程或计算步骤) 19.(本题满分 8 分) (1)求 x 的值: 24 9x  =0; (2)计算: 0 23( 1) 8 ( 2)    . 20.(本题满分 6 分)近年来,江苏省实施“村村通”工程和农村医疗卫 生改革,盐都区计划在张村、李村之间建一座定点医疗站 P,张、李 两村座落在两相交公路内(如图所示),医疗站必须满足下列条件: ①使其到两公路的距离相等; ②到张、李两村的距离也相等. 请你利用尺规作图确定 P 点的位置. (不写作法,保留作图痕迹) 21.(本题满分 6 分)如图,一木杆在离地某处断裂,木杆顶部落 在离木杆底部 8 米处,已知木杆原长 16 米,求木杆断裂处离地面多少米? A BC D 第 13 题 A B C D E F G 第 16 题 -1 4321 y xO 1 -1 第 17 题 A BC D E F G H 第 18 题 张村 李村 8 米 地面 22.(本题满分 6 分)在平面直角坐标系中,已知 A(−1,5)、B(4,2)、C(−1,0)三点. (1)点 A 关于原点 O 的对称点 A′的坐标为_____,点 B 关于 x 轴的对称点 B′的坐标为_____, 点 C 关于 y 轴的对称点 C′的坐标为_____; (2)求以(1)中的点 A′、B′、C′为顶点的△A′B′C′的面积. 23.(本题满分 6 分)如图,四边形 ABCD 是梯形,AD∥BC,∠A=90°,BD =CB,CE⊥BD,垂足为 E. (1)求证:△ABD≌△ECB; (2)若∠DBC=50°,求∠DCE 的度数. 24.(本题满分 10 分)如图,点 E 是∠AOB 的平分线上一点,EC⊥OA,ED⊥ OB,垂足分别是 C、D. 求证:(1)∠EDC=∠ECD; (2)OC=OD; (3)OE 是线段 CD 的垂直平分线. A B C D E A B C D E O 25.(本题满分 10 分)阅读下列一段文字,然后回答下列问题. 已知平面内两点 M( 1x , 1y )、N( 2x , 2y ),则这两点间的距离可用下列公式计算: MN=    2 2 1 2 1 2x x y y   . 例如:已知 P(3,1)、Q(1,−2),则这两点间的距离 PQ=    2 23 1 1 2   = 13 . 特别地,如果两点 M( 1x , 1y )、N( 2x , 2y )所在的直线与坐标轴重合或平行于坐标轴或垂直于坐 标轴,那么这两点间的距离公式可简化为 MN= 1 2x x 或 1 2y y . (1)已知 A(1,2)、B(−2,−3),试求 A、B 两点间的距离; (2)已知 A、B 在平行于 x 轴的同一条直线上,点 A 的横坐标为 5,点 B 的横坐标为−1,试求 A、B 两 点间的距离; (3)已知△ABC 的顶点坐标分别为 A(0,4)、B(−1,2)、C(4,2),你能判定△ABC 的形状吗? 请说明理由. 26.(本题满分 12 分)小华和爸爸上山游玩,爸爸乘电缆车,小华步行,两人相约在山顶的缆车终点会合.已 知小华行走到缆车终点的路程是爸爸乘缆车到山顶的线路长的 2 倍,爸爸在小华出发后 50min 才乘上电 缆车,电缆车的平均速度为 180m/min.设小华出发 x (min)行走的路程为 y (m),图中的折线表示小 华在整个行走过程中 y (m)与 x (min)之间的函数关系. (1)小华行走的总路程是_____m,他途中休息了_____min; (2)当 50≤ x ≤80 时,求 y 与 x 的函数关系式; (3)当爸爸到达缆车终点时,小华离缆车终点的路程是多少? /my /minxO 30 50 80 3600 1950 27.(本题满分 12 分)已知△ABC 为等边三角形,点 D 为直线 BC 上的一动点(点 D 不与 B、C 重合),以 AD 为边作等边△ADE(顶点 A、D、E 按逆时针方向排列),连接 CE. (1)如图 1,当点 D 在边 BC 上时,求证:①BD=CE,②AC=CE+CD; (2)如图 2,当点 D 在边 BC 的延长线上且其他条件不变时,结论 AC=CE+CD 是否成立?若不成立, 请写出 AC、CE、CD 之间存在的数量关系,并说明理由; (3)如图 3,当点 D 在边 BC 的反向延长线上且其他条件不变时,补全图形,并直接写出 AC、CE、CD 之间存在的数量关系. 图 1 A B CD E 图 2 A B C D E A B CD 图 3 八年级数学参考答案及评分标准 (阅卷前请认真校对,以防答案有误!) 一、选择题(每小题 3 分,共 24 分) 题号 1 2 3 4 5 6 7 8 答案 A C B D B B C D 二、填空题(每小题 2 分,共 20 分) 9.3. 10.<. 11.100°. 12.5. 13.4. 14.(−3,−2). 15.答案不唯一,如 y = 1x  等. 16.20. 17.4. 18.①②④⑤. 三、解答题(共 76 分) 19.(1) 24x =9,··························································································1 分 2x = 9 4 ,························································································2 分 x =± 3 2 .·····················································································4 分 (2)原式=1+2+2···················································································3 分 =5.·························································································4 分 说明:第(1)题答案写成 x = 3 2 扣 1 分; 第(2)题 0( 1) 、 3 8 、 2( 2) 的计算分别给 1 分. 20.作出线段垂直平分线,·············································································· 3 分 作出角平分线.······················································································· 6 分 21.设木杆断裂处离地面 x 米,由题意得···························································· 1 分 2 28x  = 2(16 )x .··················································································3 分 解得 x =6······························································································· 5 分 答:木杆断裂处离地面 6 米.····································································· 6 分 22.(1)(1,−5);(4,−2);(1,0).·······························································3 分 (2)S△A′B′C′= 1 5 (4 1)2    =15 2 .········································· 6 分 23.(1)∵AD∥BC, ∴∠ADB=∠EBC. ∵CE⊥BD, ∴∠BEC=90°. ∵∠A=90°, ∴∠A=∠BEC.······················································································1 分 在△ABD 和△ECB 中, A BEC ADB EBC BD CB         ,··················································································· 2 分 ∴△ABD≌△ECB(AAS).······································································· 3 分 (2)∵BD=CB,∠DBC=50°, ∴∠BDC= 1 (180 )2 DBC   = 1 (180 50 )2    =65°.········································4 分 ∴在 Rt△CDE 中,∠DCE=90°  ∠BDC=90°  65°=25°.······························6 分 24.(1)∵点 E 是∠AOB 的平分线上一点,EC⊥OA,ED⊥OB, ∴ED=EC.··························································································· 3 分 ∴∠EDC=∠ECD.················································································· 4 分 (2)∵EC⊥OA,ED⊥OB, ∴∠EDO=∠ECO=90°.··········································································5 分 由(1)知∠EDC=∠ECD, ∴∠EDO  ∠EDC=∠ECO  ∠ECD,即∠ODC=∠OCD.·····························6 分 ∴OC=OD.···························································································7 分 (3)∵OC=OD,∠EOC=∠EOD, ∴OE⊥CD,OE 平分 CD,即 OE 是线段 CD 的垂直平分线.··························10 分 25.(1)AB=    2 21 2 2 3   = 34 .·························································· 3 分 (2)AB= 5 ( 1)  =6.·············································································6 分 (3)△ABC 是直角三角形.········································································7 分 理由:∵AB=    2 20 1 4 2   = 5 ,BC=    2 21 4 2 2    =5, AC=    2 20 4 4 2   = 20 , ∴AB2+AC2= 2 2( 5) ( 20) =25,BC2=52=25. ∴AB2+AC2=BC2.··················································································9 分 ∴△ABC 是直角三角形.········································································· 10 分 26.(1)3600,20.······················································································· 2 分 (2)当 50≤ x ≤80 时,设 y 与 x 的函数关系式为 y = kx b ,根据题意得············3 分 当 x =50 时, y =1950;当 x =80 时, y =3600.········································· 4 分 ∴ 50 1950 80 3600 k b k b      . 解得 55 800 k b     .······················································································ 6 分 ∴ y 与 x 的函数关系式为 y =55 800x  .·······················································7 分 (3)缆车到山顶的路线长为 3600÷2=1800(m).··········································8 分 缆车到达终点所需时间为 1800÷180=10(min).·········································· 9 分 爸爸到达缆车终点时,小华行走的时间为 10+50=60(min).························10 分 把 x =60 代入 y = 55 800x  ,得 y =55×60  800=2500.····························· 11 分 ∴当爸爸到达缆车终点时,小华离缆车终点的路程是 3600  2500=1100(m)····12 分 27.(1)∵△ABC 和△ADE 都是等边三角形, ∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°. ∴∠BAC  ∠CAD=∠DAE  ∠CAD,即∠BAD=∠CAE.·······························1 分 在△ABD 和△ACE 中, AB AC BAD CAE AD AE       , ∴△ABD≌△ACE(SAS).········································································3 分 ∴BD=CE.··························································································· 4 分 ∵BC=BD+CD,AC=BC, ∴AC=CE+CD.···················································································· 5 分 (2)AC=CE+CD 不成立, AC、CE、CD 之间存在的数量关系是:AC=CE  CD.··································· 6 分 理由:∵AB=AC=BC,AD=AE,∠BAC=∠DAE=60°. ∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.······························ 7 分 在△ABD 和△ACE 中, AB AC BAD CAE AD AE       , ∴△ABD≌△ACE(SAS).········································································8 分 ∴BD=CE.··························································································· 9 分 ∴CE  CD=BD  CD=BC=AC,即 AC=CE  CD.····································· 10 分 (3)补全图形(如图).··········································································· 11 分 AC、CE、CD 之间存在的数量关系是:AC=CD  CE.··································12 分 说明:解答题中,考生若使用其它解法,请参考评分标准酌情给分. A B CD E

资料: 4.5万

进入主页

人气:

10000+的老师在这里下载备课资料