2012年六年级分数乘法思维训练
加入VIP免费下载

2012年六年级分数乘法思维训练

ID:642717

大小:121 KB

页数:7页

时间:2021-03-23

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
分数乘法简算 【知识视窗】:在整数计算时,正确、熟练地运用结合律、交换律、 分配律,能简化计算。那么分数的运算也同样适合这些运算定律,今 天我们就利用这些运算定律来简化分数的运算。 【典例精析】: 例 1、 1 2 3 1 7(3 8 1 6 ) (2 ) 4 3 4 3 20      【分析】:仔细观察,我们发现有些分数可以凑成整数,计算的时候可以 先把它们凑在一起在计算,这样计算就变的简单了,像这样凑在一起变成整数 的方法,我们叫做凑整法。 原式= 1 3 2 1 7[(3 1 ) (8 6 )] (2 ) 4 4 3 3 20      =(5+15)× 33 20 =33 例 2、 19170 169  【分析】:这道题我们如果直接进行计算会比较麻烦,仔细观察发现 170 比 169多了 1,不妨把 170拆成(169+1),然后利用乘法分配率来计算。 原式= 19(169 1) 169   =19+ 19 169 = 1919 169 例 3、1988 1989 1987 1988 1989 1     【分析】:仔细观察分子、分母中各个数的特点,可以考虑将分子变形。 1988×1989—1=(1987+1)×1989—1=1987×1989+1989-1=1987×1989+1988. 这样分数的分子和分母就变成一样了,计算也就简单了。 原式= 1988 1989 1987 (1987 1) 1989 1      = 1988 1989 1987 1987 1989 1989 1      =1988 1989 1987 1987 1989 1988     =1 例 4、 1 2 3 48 49 50 5 50 50 50      【分析】:这道题中的相邻两个分数之间相差 1 50 ,可以看成是等差数列, 因此我们可以运用等差数列的求和公式来计算。 原式= 1 49( ) 49 2 50 50    =1×49÷2 =24.5 『当堂训练』 1、 2 5 5 1 2(2 4 7 7 ) (2 ) 7 6 7 6 11      2、 9992002 2000  3、 2009 2010 1 2009 2009 2008     4、 1 2 3 2006 2007 2008 2008 2008 2008 2008      分数乘法应用题 【知识视窗】:能识别求一个数的几分之几是多少的应用题的结构 特征,分辨分数带单位和不带单位的区别。 【典例精析】 例 1、一根绳子长 36米,第一次用去 1 4 ,第二次用去 1 4 米,问还 剩下多少米? 【分析】:分数不带单位表示两个数量的倍数关系,带单位 表示一个具体的量,因此题中所给的两个 1 4 表示不同意思,不能 混为一谈。 【解答】:36—36× 1 4 — 1 4 =36—9— 1 4 =26 3 4 (米)。 答:还剩下 26 3 4 米。 例 2、一件衣服原价 100元,先降价 1 10 ,再涨价 1 10 ,问衣服现在 的价格是多少? 【分析】:这题先降价 1 10 ,再涨价 1 10 ,看似降价和涨价一样 多,实际上是不一样的。第一次是在 100元的基础上降价,第二 次是在降价后的价格(90)上涨价,因此衣服的价格发生了变化。 【解答】:100×(1— 1 10 )=90(元) 90×(1+ 1 10 )=99(元) 答:衣服现在的价格是 99元。 例 3、一篮子鸡蛋有 81个,第一位顾客买走 1 9 ,第二位顾客买走 剩下的 1 8 ,第三位顾客买走剩下的 1 7 ,第四位顾客买走剩 下的 1 6 ,这时篮子里还剩多少个鸡蛋? 【分析】:把原来篮子里的鸡蛋看作单位“1”,那么第一次 买走了总数的 1 3 ,第二次买走了总数的 1 1 1(1 ) 9 8 9    ,第三次买 走 了 总 数 的 1 1 1 1(1 ) 9 9 7 9     , 第 四 次 买 走 了 总 数 的 1 1 1 1 1(1 ) 9 9 9 6 9      ,也就是说每次买走的都是总数的 1 9 ,共买 了四次,还剩下总数的 5 9 。 【解答】: 1 1 1 181 (1 ) (1 ) (1 ) (1 ) 45 9 8 7 6          (个) 答:还剩下 45个鸡蛋。 例 4、甲、乙、丙、丁四人共植树 60棵,甲植树的棵树是其余三人 的 2 1 ,乙植树是其余三人 3 1 ,丙植树是其余三人的 4 1 ,丁植树几棵? 【分析】:题目中出现三次“其余三人”但“其余三人”所包含 的对象不同,因此,三个单位“1”不同。我们可以把四人的种棵 树作为单位“1”,“甲植树的棵数是其余三人的 2 1 ”,就可理解为甲植 树的棵数占 1份,其余三人占 2份,那么甲植树的棵数占总棵数的 21 1  = 3 1 , 同理,乙植树的棵数占总棵数的 31 1  = 4 1 ,丙植树的棵数占总棵数的 41 1  = 5 1 ,这些过程就是所谓的转化单位“1”,使单位“1”统一为总棵数。 【解答】:丁植树的棵数占总棵数的: 1- 2 1 - 3 1 - 4 1 = 60 13 丁植树棵数是:60× 60 13 =13(棵) 答:丁植树 13 棵。 『当堂训练』 1、 一根绳子长 45米,第一次用去 1 9 ,第二次用去 1 9 米,问还剩下 多少米? 2、 一根绳子原长 20米,先剪去 1 5 ,再接上 1 5 ,问这根绳子现在是 多少米? 3、 一根绳子长 20米,第一次剪去全长的 1 2 ,第二次剪去余下的 1 3 , 第三次剪去余下的 1 4 ,以此类推,第九次剪去最后余下的 1 10 ,还 剩下多少米? 4、兄弟四人合作修一条路,结果老大修了另外三人所修总数的一 半,老二修了另外三人总数的 1 3 ,老三修了另外三人所修的 1 4 , 老四修了 91米。问这条路全长多少米? 分数乘法提优训练 一、简便计算 1 3 1 1 5 4 4 5    2001 2000 1999 2000 2002 1     1134 32  1 2 3 998 999 1000 1000 1000 1000 1000      二、应用题 1、 第一根绳子长 40米,第二根比它多 1 5 ,第二根绳子长多少米?, 2、 一条长 3米的绳子剪去 1 3 后,再剪去 1 3 米,还剩下多少米? 3、小明看一本故事书,共有 240页,第一天看了全部的 1 3 ,第二天 看了全部的 1 4 ,第三天看了全部的 1 5 她已经看了多少页? 4、一只猴子吃一堆桃子,第一天吃了全部的 1 7 ,第二天吃了余下的 1 6 ,第三天吃了余下的 1 5 ,以此类推,第六天吃了余下的 1 2 ,第 七天吃了 12个桃子,刚好把桃子吃完,问这堆桃子一共有多少 个? 5、一笔奖金分给甲、乙、丙、丁四人,甲分得是其他三人之和的 1 3 ; 乙分得是其他三人之和的 6 1 ;丙分得是其他三人之和的 5 2 。已知丁比丙 多分到 14 元,这笔钱共有多少元? 6、找规律: 1 1 1 1( ) 2 3 4 2 2 3 3 4        1 1 1 1( ) 3 4 5 2 3 4 4 5        1 1 1 1( ) 4 5 6 2 4 5 5 6        1 98 99 100    ( ) 你有什么发现:

资料: 4.5万

进入主页

人气:

10000+的老师在这里下载备课资料