可能性4
人教版·五年级上册
第1课时 事件发生的可能性(例1)
一、新课导入
一、新课导入
二、例题讲解
小丽、小雪和小明
每人表演一个节目。
三张卡片分别写着唱歌、跳舞、
朗诵,小明可能会抽到什么节目?
三种情况都有可能。
二、例题讲解
小明抽完还剩两张。接下
来小丽可能会抽到什么?
我抽中
了跳舞!
唱歌和朗诵
都有可能。
说说你是怎
么想的?
不可能是
跳舞!
二、例题讲解
小丽
最后只有一张了。
小雪会抽到什么?
一定抽到唱歌吗?
你是怎样想的?
三、新知应用
(一)做一做
1号 2号
从图中你都知道了什么?
1号盒子里全是红棋子。
2号盒子里有绿、红、黄、
蓝四种颜色的棋子。
三、新知应用
1号 2号
哪个盒子里肯定能摸出红棋子?
1号盒子。 哪个盒子里不可能摸出绿棋子?
1号盒子。
三、新知应用
1号 2号
哪个盒子里可能摸出绿棋子?
2号盒子。
在2号盒子里可能摸出什么颜色的棋子?
绿、红、黄、蓝四种颜色的棋子
都有可能被摸出。
我们先来摸一摸吧!(一)
三、新知应用
(二)在( )里填上“一定”“可能”或“不可能”。
1.鱼儿( )离不开水。
2.太阳明天( )从西方升起。
3.大熊猫 ( )会飞。
4.天上( )有许多星星。
5.明天( )会下雨。
6.李阿姨将出生的宝宝( )是女孩。
一定
一定
不可能
不可能
可能
可能
三、新知应用
可能停在蓝色、粉色、
绿色或黄色上。
(三)说一说指针可能停在哪种颜色上?
三、新知应用
(四)连一连
从盒子里摸出一个球,结果会是什么?
一定摸到黄球。
可能摸到黄球。
可能摸到红球。
不可能摸到红球。
一定摸到蓝球。
可能摸到蓝球。
不可能摸到蓝球。
不可能摸到黄球。
这个盒子里有红、蓝两种颜色的球,
所以……这个盒子里全是黄色的球,所以……
四、课堂小结
在一定的条件下,一些事件的结果是可以预
知的,具有确定性,确定的事件用“一定”或
“不可能”来描述事件的结果。一些事件的结果
是不可预知的,具有不确定性,不确定的事件用
“可能”来描述事件的结果。
回顾本节课,
你有什么收
获呢?
五、课后作业
1.完成课本“练习十一”第47页第2题。
2.完成练习册“可能性”第一课时的作业。
可能性4
人教版·五年级上册
第2课时 可能性的大小(例2例3)
一、新课导入
摸出一个棋子,
可能是什么颜色?
可能是红色,
也可能是蓝色。
一、新课导入
摸出一个棋子,摸出哪种
颜色棋子的可能性大呢?
我们来试
一试吧!
二、例题讲解
摸出一个棋子,记录它的颜色,
然后放回去摇匀再摸,重复20次。
二、例题讲解
汇总结果,你有什么发现?都是摸出 的次数比 的次数少。
再摸一次,摸出哪种颜色棋子
的可能性大?摸出 的可能性大。
二、例题讲解
指针停在哪种颜色
上的可能性大?
指针停在黄色
上的可能性大。
指针停在哪种颜色
上的可能性小?
指针停在黄色
上的可能性小。
二、例题讲解
例3:小组活动:盒子中装有红、黄两种颜色
的球,每个小组的盒子里装的球都是一样的。
从中摸出一个球后再放回去摇匀,重复20次
并记录下球的颜色。
开始活动吧!
二、例题讲解
下面是八个小组的统计情况。
1 2 3 4 5 6 7 8 合计
次数
颜色
小组
15 16
5 4
12 18 15 16 14 17 123
8 2 5 4 6 3 37
观察统计表,你发
现了什么?
都是摸出 的次数比 的次数多。
多。
盒子里是 多还是 多呢?
二、例题讲解
你发现可能性的大小与
什么有关?
事件发生的可能性的大小与个体数量的多少有关,
个体在总数中所点的数量越多,出现的可能性就越
大,反之,出现的可能性也就越小。
三、新知应用
1.猜一猜,摸出哪种颜
色棋子的可能性最大?
摸出哪种颜色棋子的可
能性最小?
摸出红色棋子的可能性最大,摸出黄色
棋子的可能性最小。
三、新知应用 哪面朝上?
2.
全班每人掷一次。
朝上的有 人,
朝上的有 人。 朝上的可能性大还是
朝上的可能性大?
如果有更多的人来
掷,结果会怎样呢?
如果全校的人每人掷一次,
哪个面朝上的可能性大?
四、课堂小结 回顾本节课,
你学会了什么?
1.事件发生的可能性是有大小的。
2.事件随机出现的可能性的大小与个体数
量的多少有关,个体在总数中所占数量越多,
出现的可能性就越大;反之,可能性就越小。
五、课后作业
完成课本“练习十一”第47页第5题、第48页第6题、第7题。
可能性4
人教版·五年级上册
第3课时 巩固练习 练习十一
抽签游戏。(教材P48第8题)
讲故事 5张
桌子上有一些卡片。
卡片上都写着什么?
我最有可能表演什么节
目?
讲故事。
一、复习巩固
知识点1 事件发生的确定性和不确定性。
【典例讲解】
一、复习巩固
从左边的口袋中摸出一个球,摸出哪种
颜色球的可能性大?为什么?
摸出红球的可能性大,因为口袋中
红球的数量比蓝球多。
知识点2 所给物体的数量越多,事件发生的可能性越大。
1.一个正方体,六个面上分别写着数字1~6。
掷一次,可能掷出哪些数字?(教材P47第2
题)
可能掷出1,2,3,4,5或6。
基础练习
按要求涂一涂。(教材P47第5题)
(1)指针可能停在红色、黄色或蓝色区域。
(2)指针可能停在红色、黄色或蓝色区域,并且停在
蓝色区域的可能性最大,停在红色区域的可能性最小。
(1) (2) 答案不唯一。
知识点3 事件发生的可能性越大,个体的数量就越多。
【典例讲解】
一、复习巩固
知识总结
1.确定事件用“一定”“不可能”来描述,不确
定事件用“可能”来描述;
2.相同条件下,在总数中所占数量越多,可能性
越大;所占数量越少,可能性越小;
3.事件发生的可能性越大,个体的数量就越多。
二、课堂练习
(教材P48第9题)
二、课堂练习
1.小明妈妈的年龄( ) 比小明大。
A.不可能 B.可能 C.一定
2.妈妈的身高( )比女儿高。
A.一定 B.不一定 C.不可能
3.三位数加三位数,和( )是四位数。
A.可能 B.一定 C.不可能
C
B
在一定的条件下,一些事件的结果是可以预知的,具
有确定性,确定的事件用“一定”或“不可能”来描述事
件的结果。一些事件的结果是不可预知的,具有不确定性,
不确定的事件用“可能”来描述事件的结果。
选一选。
A
二、课堂练习
4.从8个红色的的玻璃球和2个黄色的玻璃球中任意摸出一个,
找到( )色的玻璃球可能性更大些。
A.红 B.蓝 C.黄
5.从1个蓝色的玻璃球和10个白色的玻璃球中任意摸出一个,
摸到( )玻璃球可能性更小一些。
A.白色 B.蓝色 C.红色
6.把3个白球和5个红球放在盒子里,任意摸出一个,( )
是蓝色的。
A.可能 B.一定 C.不可能
A
B
C
二、课堂练习
事件发生的可能性是有大小的。可能性的
大小与数量有关,在总数中所占数量越多,可
能性就越大;所占数量越少,可能性就越小。
三、拓展提升
1.书架上有一些漫画书和8本故事书,任意拿1
本书,如果拿到漫画书的可能性大,那么漫画
书最少有多少本?
8+1=9(本)
答:漫画书最少有9本。
三、拓展提升
2.在6张卡片上分别写上“高兴”或“生气”,任意摸1
张,要使摸出“高兴”的可能性更大,应该怎样写?
在4张卡片上写上“高兴”,2张卡片上写上“生气”;
或在5张卡片上写上“高兴”,1张卡片上写上“生气”。
三、课后作业
完成课本“练习十一”第49页第10题、第11题。
可能性4
人教版·五年级上册
第4课时 掷一掷
一、新课导入 tóu
骰 子
骰 子俗称色(shǎi)子,它
上面有哪些数字呢?
一、新课导入
掷一个 ,可能掷出哪些数?
1、2、3、4、5、6。
掷出每个数的可能
性相等吗?
相等。
二、例题讲解
同时掷两个骰子,得到两个数。
想一想,它们的和可能有哪些?
(1)先自己想一想,写在草稿纸上。
(2)再和同组的同学说说你是怎样想的。 52
6
341
同时掷两个骰子,得到两个数。
想一想,它们的和可能有哪些?
二、例题讲解
它们的和可能有2,3,4,5,
6,7,8,9,10,11,12。 52
6
341
它们的和有可能
是1吗?为什么?
同时掷两个骰子,
点数和最小会是
几?最大会是几?
点数和最小是2,
最大是12。
二、例题讲解
游戏规则:
把掷两次骰子得到的两个数字的和可能出现的数字分为两组:
A组的幸运数字是5、6、7、8、9
B组的幸运数字是2、3、4、10、11、12
两名选手上台前同时掷骰子,当骰子的点数和为你所选中的幸运数字
时,得1分;
掷20次,谁的分数多,谁就获胜。
你们想选哪组幸运数字?
我们选B组。
我们选6个数,老师选5个数
。我们赢的可能性更大。
二、例题讲解
赶快开始游戏吧!把数据记
录在下面的表格中。
赢的分数
老
师
学
生
二、例题讲解
谁赢了?如果你不服输,
还可以多玩几次?
为什么总是老师赢呢?
二、例题讲解
两人一组,轮流掷。和是几,就在几的上面涂上一格。
涂满其中任意一列,游戏结束。
你们自己再来掷一掷,
看看和是哪些数的可能
性大。
二、例题讲解
观察本组的统计图,从图中
你发现了什么?小组间互
相交流一下。
和是2,3,4,10,
11,12 的可能性小。
和是5,6,7,8,9的
可能性大。
二、例题讲解
我们能不能从数学的角度去想:
为什么和是5,6,7,8,9的可
能性大?而和是2,3,4,10,
11,12 的可能性小呢?
猜测
二、例题讲解 1
1+1 1+2 1+3 1+4 1+5 1+6 2+6 3+6 4+6 5+6 6+6
2+1 2+2 2+3 2+4 2+5 3+5 4+5 5+5 6+5
3+1 3+2 3+3 3+4 4+4 5+4 6+4
4+1 4+2 4+3 5+3 6+3
5+1 5+2 6+2
6+1
2 3 4 5 6 7 8 9 10 11 12和 2 3 4 5 6 73 4 5 6 7 84 5 6 7 8 95 6 7 8 9 106 7 8 9 10 117 8 9 10 11 12
1 2 3 4 5 6
2
1 2 3 4 5 6
3
1 2 3 4 5 6
4
1 2 3 4 5 6
5
1 2 3 4 5 6
6
1 2 3 4 5 6
验证
二、例题讲解
6 1
5 1 5 2 6 2
4 1 4 2 4 3 5 3 6 3
3 1 3 2 3 3 3 4 4 4 5 4 6 4
2 1 2 2 2 3 2 4 2 5 3 5 4 5 5 5 6 5
1 1 1 2 1 3 1 4 1 5 1 6 2 6 3 6 4 6 5 6 6 6
2 3 4 5 6 7 8 9 10 11 12
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ +
7
6
5
4
3
2
1
0
二、例题讲解
两个小正方体同时掷出和是
“5,6,7,8,9”的可能性
大,掷出“2,3,4,10,11
,12”的可能性小。
结论
二、例题讲解
从理论验证来看,数字“7”出现的可能性最大,
但为什么有的小组出现最多的数字不是“7”,
是不是和我们的结论矛盾呢?
试验的次数越多,试验
数据越接近理论数据!
典型的随机试验有掷骰子、扔硬币、抽扑克牌以及
轮盘游戏等。
三、课堂小结
回顾本节课,
你学会了什么?
事件发生的可能性是有大小的,只要大家带着数学
的眼光去走进生活,观察生活,你会有更多的发现。
五、课后作业
同时掷3个骰子,得到3个数,它们的和可能有哪些?
计算出朝上面的3个数的和,看看哪些数字出现得多?哪
些数字出现得少?