青岛版九年级数学上册期末试题及答案2套
期末检测试卷(1)
一、选择题(每小题3分,共24分)
1.下面是一天中四个不同时刻两个建筑物的影子:
将它们按时间先后顺序进行排列,正确的是( )
A.③④②① B.②④③① C.③④①② D.③①②④
2.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )
A.sinA= B.tanA= C.cosB= D.tanB=
3.如图,分別将三角形、矩形、菱形、正方形各边向外平移1个单位并适当延长,得到下列图形,其中变化前后的两个图形不一定相似的有( )
A.1对 B.2对 C.3对 D.4对
4.计算:cos30°+sin60°tan45°=( )
A.1 B. C. D.
5.将抛物线y=x2向下平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的表达式为( )
A.y=(x﹣1)2+2 B.y=(x+1)2﹣2 C.y=(x﹣2)2﹣1 D.y=(x﹣1)2﹣2
6.如图,在△ABC中,点D、E分别是边AB和AC上的点,AD=2BD,DE∥BC,S△ABC=36,则S△ADE=( )
A.9 B.16 C.18 D.24
7.如图,已知线段AB两个端点的坐标分别为A(6,6),B(8,4),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点D的坐标为( )
A.(4,2) B.(2,4) C.(3,3) D.(4,2)或(﹣4,2)
8.对于二次函数y=﹣2(x﹣1)(x+3),下列说法正确的是( )
A.图象的开口向上
B.图象与y轴交点坐标是(0,6)
C.当x>﹣1时,y随x的增大而增大
D.图象的对称轴是直线x=1
二、填空题(每小题3分,共18分)
9.观察图1中的三种视图,在图2中与之对应的几何体是 (填序号)
10.小华的爸爸存入银行1万元,先存一个一年定期,一年后将本息自动转存另一个一年定期,两年后共得本息10609元.设存款的年利率为x,则由题意列方程应为 .
11.如图,把两个全等的矩形ABCD和矩形CEFG拼成如图所示的图案,则∠AFC= °.
12.如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是 cm.
13.如图,菱形ABCD的对角线AC=4cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为 .
14.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点的坐标分别为(﹣1,0),(3,0).对于下列结论:①abc>0,;b2﹣4ac>0;③当x1<x2<0时,y1>y2;④当﹣1<x<3时,y>0.其中正确的有 个.
三、作图题(共4分)
15.画出如图所示几何体的主视图、左视图.
四、解答题(本题共9小题,共74分)
16.解方程:
(1)x2﹣6x=11(配方法)
(2)(x+5)(x+1)=12.
17.如图,某高尔夫球手击出的高尔夫求的运动路线是一条抛物线,当球水平运动了24m时达到最高点.落球点C比击球点A的海拔低1m,它们的水平距离为50m.
(1)按如图所示的直角坐标系,求球的高度y(m)关于水平距离x(m)的函数关系式;
(2)与击球点相比,球运动到最高点时有多高?
18.小明、小颖和小凡做“石头、剪刀、布”游戏,游戏规则如下:由小颖和小凡做“石头、剪刀、布”游戏,如果两人的手势相同,那么小明获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小颖和小凡每次出这三种手势的可能性相同:
(1)请用树状图或列表的方法表示一次游戏中所有可能出现的结果;
(2)这个游戏规则对三人公平吗?请说明理由.
19.在某次反潜演习中,我军舰A测得离开海平面的下潜潜艇C的俯角为37°,位于军舰A正上方1100米的反潜飞机B測得此时潜艇C的俯角为67°,求前艇C离开海平面的下潜深度.(参考数据:sin37°≈,cos37°≈,tan37°≈,sin67°≈,cos67°≈,tan26°≈)
20.如图,正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于点A、B两点,已知点A的横坐标为1,点B的纵坐标为﹣3.
(1)请直接写出A、B两点的坐标;
(2)求处这两个函数的表达式;
(3)根据图象写出正比例函数的值不小于反比例函数的值的x的取值范围.
21.已知,如图,在▱ABCD中,AC是对角线,AB=AC,点E、F分别是BC、AD的中点,连接AE,CF.
(1)四边形AECF是什么特殊四边形?证明你的结论;
(2)当△ABC的角满足什么条件时,四边形AECF是正方形?证明你的结论.
22.某商店购进一批单价为30元的日用商品,如果以单价40元销售,那么每星期可售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.设销售单价为x(元)(x>40)时,该商品每星期获得的利润y(元).
(1)求出y与x之间的函数关系式及自变量x的取值范围;
(2)求出销售单价为多少元时,每星期获得的利润最大?最大利润是多少?
23.如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH是正方形ABCD的外接正方形.
探究一:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.
因为正方形ABCD的面积为1,则正方形EFGH的面积为2,
所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,
∵Rt△AEB≌Rt△BFC
∴BF=AE=﹣x
在Rt△AEB中,由勾股定理,得
x2+(﹣x)2=12
解得,x1=x2=
∴BE=BF,即点B是EF的中点.
同理,点C,D,A分别是FG,GH,HE的中点.
所以,存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍
探究二:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍?(仿照上述方法,完成探究过程)
探究三:巳知边长为1的正方形ABCD, 一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)
探究四:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍?(n>2)(仿照上述方法,完成探究过程)
24.已知,如图,在△ABC中,已知AB=AC=5cm,BC=6cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线QD从点C出发,沿CB方向匀速运动,速度为1cm/s,且QD⊥BC,与AC,BC分别交于点D,Q;当直线QD停止运动时,点P也停止运动.连接PQ,设运动时间为t(0<t<3)s.解答下列问题:
(1)当t为何值时,PQ∥AC?
(2)设四边形APQD的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形APQD:S△ABC=23:45?若存在,求出t的值;若不存在,请说明理由.
参考答案与试题解析
一、选择题
1.【考点】平行投影.
【分析】根据影子变化规律可知道时间的先后顺序.
【解答】从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.
所以正确的是③④①②.故选C.
【点评】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.
2.【考点】特殊角的三角函数值;锐角三角函数的定义.
【分析】根据三角函数的定义求解.
【解答】∵在Rt△ABC中,∠ACB=90°,BC=1,AB=2.∴AC===,
∴sinA==,tanA===,cosB==,tanB==. 故选D.
【点评】解答此题关键是正确理解和运用锐角三角函数的定义.
3.【考点】相似图形.
【分析】利用相似图形的判定方法:对应角相等,对应边成比例的图形相似,进而判断即可.
【解答】∵三角形、矩形对应边外平移1个单位后,对应边的比值不一定相等,∴变化前后的两个三角形、矩形都不相似,∵菱形、正方形边长改变后对应比值仍相等,且对应角相等,
∴变化前后的两个菱形、两个正方形相似,故选:B.
【点评】此题主要考查了相似图形的判定,正确掌握相似图形的判定方法是解题关键.
4.【考点】特殊角的三角函数值.
【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.
【解答】原式=+×1=.故选:C.
【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
5.【考点】二次函数图象与几何变换.
【专题】几何变换.
【分析】先利用顶点式得到抛物线y=x2的顶点坐标为(0,0),再根据点利用的规律得到点(0,0)平移后所得对应点的坐标为(1,﹣2),然后根据顶点式写出平移后抛物线的解析式.
【解答】抛物线y=x2的顶点坐标为(0,0),点(0,0)向下平移2个单位,再向右平移1个单位所得对应点的坐标为(1,﹣2),所以所得到的抛物线的解析式是y=(x﹣1)2﹣2.故选D.
【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
6.【考点】相似三角形的判定与性质.
【分析】由平行线的性质得出△ADE∽△ABC,得出相似三角形的面积比等于相似比的平方: =()2=,即可得出结果.
【解答】∵AD=2BD,∴AD=AB,∴=,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴S△ADE=×36=16;故选:B.
【点评】本题考查了相似三角形的判定与性质;证明三角形相似得出面积比等于相似比的平方是解决问题的关键.
7.【考点】位似变换;坐标与图形性质.
【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.
【解答】线段AB两个端点的坐标分别为A(6,6),B(8,4),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点B与点D是对应点,则点D的坐标为(8×,4×),即(4,2),故选:A.
【点评】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.
8.【考点】二次函数的性质.
【分析】将函数图形变成顶点式,依照二次函数的性质对比四个选项即可得出结论.
【解答】A、y=﹣2(x﹣1)(x+3),∵a=﹣2<0,∴图象的开口向下,故本选项错误;B、y=﹣2(x﹣1)(x+3) =﹣2x2﹣4x+6,当x=0时,y=6,即图象与y轴的交点坐标是(0,6),故本选项正确;C、y=﹣2(x﹣1)(x+3)=﹣2(x+1)2+8,即当x>﹣1,y随x的增大而减少,故本选项错误;D、y=﹣2(x﹣1)(x+3)=﹣2(x+1)2+8,即图象的对称轴是直线x=﹣1,故本选项错误.故选B.
【点评】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.
二、填空题
9.【考点】由三视图判断几何体.
【分析】首先根据主视图中有两条虚线,发现该几何体的应该有两条从正面看不到的棱,然后结合俯视图及提供的三个几何体确定正确的序号.
【解答】结合主视图和俯视图发现几何体的背面应该有个凸起,故淘汰①②,选③,故答案为:③.
【点评】本题考查了由三视图判断几何体的知识,解题的关键是结合三视图及三个几何体确定正确的答案,难度不大.
10.【考点】由实际问题抽象出一元二次方程.
【分析】根据题意可得一年后的本息和为:10000(1+x),则两年后的本息和为:10000(1+x)(1+x),进而得出答案.
【解答】设存款的年利率为x,则由题意列方程应为:10000(1+x)2=10609.故答案为:10000(1+x)2=10609.
【点评】此题主要考查了由实际问题抽象出一元二次方程,正确表示出第2年的本息和是解题关键.
11.【考点】矩形的性质;等腰直角三角形.
【分析】根据矩形的性质得出AB=CE,BC=EF,∠B=∠E=90°,根据SAS推出△ABC≌≌△CEF,根据全等得出∠BAC=∠FCE,AC=CF,求出△ACF是等腰直角三角形,即可得出答案.
【解答】∵四边形ABCD和四边形CEFG是全等的矩形,∴AB=CE,BC=EF,∠B=∠E=90°,在△ABC和△CEF中,,∴△ABC≌≌△CEF(SAS),∴∠BAC=∠FCE,AC=CF,∵∠B=90°,∴∠BAC+∠ACB=90°,∴∠ACB+∠FCE=90°,∴∠ACF=90,∴△ACF是等腰直角三角形,∴∠AFC=45°.故答案为:45.
【点评】本题考查了矩形的性质,全等三角形的性质和判定的应用,能根据定理推出三角形ACF是等腰直角三角形是解此题的关键.
12.【考点】解直角三角形的应用-坡度坡角问题.
【分析】首先过点B作BD⊥AC于D,根据题意即可求得AD与BD的长,然后由斜坡BC的坡度i=1:5,求得CD的长,继而求得答案.
【解答】过点B作BD⊥AC于D,根据题意得:AD=2×30=60(cm),BD=18×3=54(cm),∵斜坡BC的坡度i=1:5,∴BD:CD=1:5,∴CD=5BD=5×54=270(cm),∴AC=CD﹣AD=270﹣60=210(cm).∴AC的长度是210cm.故答案为:210.
【点评】此题考查了解直角三角形的应用:坡度问题.此题难度适中,注意掌握坡度的定义,注意数形结合思想的应用与辅助线的作法.
13.【考点】菱形的性质;平移的性质.
【分析】首先得出△MEC∽△DAC,则=,进而得出=,即可得出答案.
【解答】∵ME∥AD,∴△MEC∽△DAC,∴=,∵菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,∴AE=1cm,EC=3cm,∴=,∴=,∴图中阴影部分图形的面积与四边形EMCN的面积之比为: =.故答案为:.
【点评】此题主要考查了菱形的性质以及相似三角形的判定与性质,得出=是解题关键.
14.【考点】二次函数图象与系数的关系.
【分析】首先根据对称轴公式结合a的取值可判定出b<0,根据a、b、c的正负即可判断出①的正误;抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,故②正确;根据二次函数的性质即可判断出③的正误;由图象可知:当﹣1<x<3时,y<0,即可判断出④的正误.
【解答】根据图象可得:抛物线开口向上,则a>0.抛物线与y交与负半轴,则c<0,对称轴:x=﹣>0,∴b<0,∴abc>0,故①正确;∵它与x轴的两个交点分别为(﹣1,0),(3,0),则△=b2﹣4ac>0,故②正确;∵抛物线与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是x=1,∵抛物线开口向上,∴当x<1时,y随x的增大而减小,∴当x1<x2<0时,y1>y2;故③正确;由图象可知:当﹣1<x<3时,y<0,故④错误;故正确的有①②③.故答案为①②③.
【点评】
此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右..
三、作图题
15.【考点】作图-三视图.
【分析】分别找到从正面,左面,上面看得到的图形即可,看到的棱用实线表示;实际存在,没有被其他棱挡住,又看不到的棱用虚线表示.
【解答】
【点评】此题主要考查了画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.
四、解答题
16.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.
【分析】(1)先配方,再开方,即可得出两个一元一次方程,求出方程的解即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.
【解答】(1)x2﹣6x=11
x2﹣6x+9=11+9
(x﹣3)2=20,
x﹣3=
x1=3+2,x2=3﹣2;
(2)(x+5)(x+1)=12,
整理得:x2+6x﹣7=0,
(x+7)(x﹣1)=0,
x+7=0,x﹣1=0,
x1=﹣7,x2=1.
【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程转是解此题的关键.
17.【考点】二次函数的应用.
【分析】(1)根据待定系数法,可得函数解析式;(2)根据自变量,可得函数值.
【解答】(1)以海拔0米为x轴,过最高点为y轴,可设函数关系式:y=ax2+b,函数图象过(﹣24,0)(26,﹣1),
把坐标点(﹣24,0),(26,﹣1)代入y=ax2+b,得
,解得
函数关系式为:y=﹣0.01x2+5.76;
(2)当x=0时,y=b=5.76,
答:球运动到最高点时最高为5.76米.
【点评】本题考查了二次函数的应用,建立平面直角坐标系是解题关键.
18.【考点】游戏公平性;列表法与树状图法.
【分析】(1)列表得出所有等可能的情况数,找出两人手势相同的情况,求出小凡获胜的概率即可;(2)找出小明与小颖获胜的情况数,求出两人获胜的概率,比较即可得到结果.
【解答】(1)列出表格,如图所示:
石头 剪刀 布
石头 (石头,石头) (剪刀,石头) (布,石头)
剪刀 (石头,剪刀) (剪刀,剪刀) (布,剪刀)
布 (石头,布) (剪刀,布) (布,布)
由列表可知所有等可能的情况有9种;
(2)小明获胜的情况有3种,小颖获胜的情况有3种,
∴P(小明获胜)=P(小颖获胜)==,
∴P(小凡获胜)=,
∴这个游戏对三人公平.
【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平
19.【考点】解直角三角形的应用-仰角俯角问题.
【分析】作CD⊥AB于点D.设AD=x米,在直角△ACD中利用三角函数利用x表示出CD,然后在直角△ACD中利用三角函数即可列方程求得x的值.
【解答】作CD⊥AB于点D.设AD=x米,
∵在直角△ACD中,∠ACD=37°,tan∠ACD=,
∴CD====.
∴BD=AB+AD=1100+x,
∵直角△ACD中,∠DBC=23°,tan∠ACD=,
∴=,
解得:x=.
答:潜艇下潜深度是米.
【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.
20.【考点】反比例函数与一次函数的交点问题.
【分析】(1)根据题意得出A、B关于原点成中心对称,根据中心对称的性质从而求得A(1,3),B(﹣1,﹣3),(2)把A(1,3)代入y=k1x(k1≠0)与y=即可求得k1,k2;(3)根据图象和交点A、B的坐标即可求得.
【解答】(1)∵正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于点A、B两点,
∴A、B关于原点成中心对称,
∵点A的横坐标为1,点B的纵坐标为﹣3.
∴A(1,3),B(﹣1,﹣3),
(2)把A(1,3)代入正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0),得k1=3,k2=3,
∴这两个函数的表达式为y=3x和y=;
(3)由图象可知:正比例函数的值不小于反比例函数的值的x的取值范围为﹣1≤x<0或x>1.
【点评】本题考查了反比例函数和一次函数的交点问题,根据题意求得A、B的坐标是解题的关键.
21.【考点】正方形的判定;平行四边形的性质.
【分析】(1)平行四边形的性质得出AD=BC,AD∥BC,求出AF=CE,AF∥CE,求出四边形AECF是平行四边形,求出∠AEC=90°,即可得出答案;(2)求出AE=EC=BC,即可得出答案.
【解答】(1)四边形AECF是矩形,
证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∵E、F分别是BC、AD的中点,
∴AF=AD,CE=BC,
∴AF=CE,AF∥CE,
∴四边形AECF是平行四边形,
∵AB=AC,E为BC的中点,
∴AE⊥BC,
∴∠AEC=90°,
∴四边形AECF是矩形;
(2)当△ABC满足∠BAC=90°时,四边形AECF是正方形,
证明:∵∠BAC=90°,E为BC的中点,
∴AE=EC=BC,
∵四边形AECF是矩形,
∴四边形AECF是正方形,
∴当△ABC满足∠BAC=90°°时,四边形AECF是正方形.
【点评】本题考查了矩形的判定、菱形的判定、正方形的判定,平行四边形的性质和判定,等腰三角形的性质,直角三角形的性质的应用,能综合运用知识点进行推理是解此题的关键.
22.【考点】二次函数的应用;二次函数的最值;根据实际问题列二次函数关系式.
【专题】应用题;函数思想;二次函数的应用.
【分析】(1)根据“实际销量=原计划销量﹣因价格提高减少的销量”表示出销售量,再根据:每周利润=每件利润×实际销售量可列出函数关系式;由销售量≥0确定x的取值范围;(2)将(1)中函数关系式配方成顶点式,依据顶点式可得其最大值.
【解答】(1)根据题意,当销售单价定为x元时,其每周销售量为:400﹣20(x﹣40),
则该商品每星期获得的利润y=(x﹣30)[400﹣20(x﹣40)]=﹣20x2+1800x﹣36000,
即y=﹣20x2+1800x﹣36000,
∵其每周销售量400﹣20(x﹣40)≥0且x>40,
∴40<x≤60;
(2)由(1)知y=﹣20x2+1800x﹣36000,
配方得:y=﹣20(x﹣45)2+4500,
∵﹣20<0,且40<45<60,
∴当x=45时,y最大值=4500,
答:销售单价为45元时,每星期获得的利润最大,最大利润是4500元.
【点评】本题主要考查二次函数的实际应用能力,将实际问题根据相等关系建立二次函数关系是关键.
23.【考点】四边形综合题.
【分析】探究二,根据探究一的解答过程、运用一元二次方程计算即可;探究三,根据探究一的解答过程、运用一元二次方程根的判别式解答;探究四,根据探究一的解答过程、运用一元二次方程根的判别式解答.
【解答】探究二:因为正方形ABCD的面积为1,则正方形EFGH的面积为3,
所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,
∵Rt△AEB≌Rt△BFC
∴BF=AE=﹣x
在Rt△AEB中,由勾股定理,得
x2+(﹣x)2=12
整理得x2﹣x+1=0
b2﹣4ac=3﹣4<0,
此方程无解,
不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍;
探究三:因为正方形ABCD的面积为1,则正方形EFGH的面积为4,
所以EF=FG=GH=HE=2,设EB=x,则BF=2﹣x,
∵Rt△AEB≌Rt△BFC
∴BF=AE=2﹣x
在Rt△AEB中,由勾股定理,得
x2+(2﹣x)2=12
整理得2x2﹣4x+3=0
b2﹣4ac=16﹣24<0,
此方程无解,
不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍,
故答案为:不存在;
探究四:因为正方形ABCD的面积为1,则正方形EFGH的面积为n,
所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,
∵Rt△AEB≌Rt△BFC
∴BF=AE=﹣x
在Rt△AEB中,由勾股定理,得
x2+(﹣x)2=12
整理得2x2﹣2x+n﹣1=0
b2﹣4ac=8﹣4n<0,
此方程无解,
不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍.
【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及一元二次方程的解法,读懂探究一的解答过程、正确运用一元二次方程根的判别式是解题的关键.
24.【考点】相似形综合题.
【分析】(1)设当ts时PQ∥AC,再用t表示出BP与BQ的长,根据相似三角形的性质即可得出结论;(2)分别过点A、P作AN⊥BC,PN⊥BC于点N、M,根据勾股定理求出AN的长,再由相似三角形的性质求出PM的长,根据三角形的面积公式即可得出结论;(3)分别用t表示出四边形APQD与三角形ABC的面积,进而可得出结论.
【解答】(1)当ts时PQ∥AC,
∵点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线QD从点C出发,沿CB方向匀速运动,速度为1cm/s,
∴BP=t,BQ=6﹣t.
∵PQ∥AC,
∴△BPQ∽△BAC,
∴=,即=,解得t=(s).
答:当t为s时,PQ∥AC;
(2)过点A、P作AN⊥BC,PN⊥BC于点N、M,
∵AB=AC=5cm,BC=6cm,
∴BN=CN=3cm,
∴AN===4cm.
∵AN⊥BC,PN⊥BC,
∴△BPM∽△BAN,
∴=,即=,解得PM=,
∴S△BPQ=BQPM=(6﹣t)=﹣+t.
∵AB=AC=5cm,
∴∠C=45°,
∴QC=DQ,
∴S△CDQ=CQDQ=t2.
∵S△ABC=BCAN=×6×4=12,
∴y=S四边形APQD=S△ABC﹣S△CDQ﹣S△BPQ=12﹣t2﹣(﹣+t)=12﹣t2﹣t(0<t<3);
(3)存在.
∵由(2)知,S四边形APQD=S△ABC﹣S△CDQ﹣S△BPQ=12﹣t2﹣(﹣+t)=12﹣t2﹣t,S△ABC=12,
∴=,解得t1=﹣12+,t2=﹣12﹣(舍去).
答:当t=(﹣12+)s时,S四边形APQD:S△ABC=23:45.
【点评】本题考查的是相似形综合题,涉及到相似三角形的判定与性质、等腰直角三角形等知识,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
期末检测试卷(2)
一、选择题:本大题共12小题,其中1-8小题每小题3分,9-12小题每小题3分,共40分.在每小题给出的四个选项中,只有一项是正确的,请将正确的字母代号涂在答题卡相应位置上.
1.下列方程是一元二次方程的是( )
A.(x﹣3)x=x2+2 B.ax2+bx+c=0 C.3x2﹣+2=0 D.2x2=1
2.下列标识中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
3.把方程x2﹣4x+1=0配方,化为(x+m)2=n的形式应为( )
A.(x-2)2=-3 B. (x-2)2=3 C.(x+2)2=-3 D. (x+2)2=3
4.如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是( )
A.34° B.36° C.38° D.40°
5.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是( )m.
A.4 B.5 C. D.2
6.将一个正六面体骰子连掷两次,它们的点数都是4的概率是( )
A. B. C. D.
7.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=( )
A. B. C. D.
8.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是( )
A. B. C. D.
9.若m为实数,则函数y=(m﹣2)x2+mx+1的图象与坐标轴交点的个数为( )
A.3 B.2 C.1或2 D.2或3
10.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为( )
A.2.5 B.2.8 C.3 D.3.2
11.如图,BC是⊙A的内接正十边形的一边,BD平分∠ABC交AC于点D,则下列结论正确的有( )
①BC=BD=AD;②BC2=DCAC;③AB=2AD;④BC=AC.
A.1个 B.2个 C.3个 D.4个
12.已知抛物线y=ax2+bx+c中,4a﹣b=0,a﹣b+c>0,抛物线与x轴有两个不同的交点,且这两个交点之间的距离小于2.则下列结论:①abc<0,②c>0,③a+b+c>0,④4a>c,其中,正确结论的个数是( )
A.4 B.3 C.2 D.1
二、填空题:本大题共4个小题,每小题4分,共16分,把答案写在题中横线上.
13.若⊙O的弦AB所对的圆心角∠AOB=50°,则弦AB所对的圆周角的度数为 .
14.如图,在Rt△ABC中,∠B=90°,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC,则出发 秒时,四边形DFCE的面积为20cm2.
15.如图所示,AB是半圆的直径,∠C的两边分别与半圆相切于A、D两点,DE⊥AB,垂足为E,AE=3,BE=1,则图中阴影部分的面积为 .
16.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是 .
三、解答题:本大题共6小题,共64分.解答应写出文字说明、证明过程或演算步骤.
17.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.
(1)从中任意抽取一张卡片,该卡片上数字是5的概率为 ;
(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.
18.关于x的方程有两个不相等的实数根
(1)求m的取值范围;
(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.
19.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10 米),围成一个长方形的花圃.设花圃的宽AB为x米,面积为S平方米.
(1)求S与x的函数关系式;写出自变量x的取值范围.
(2)怎样围才能使长方形花圃的面积最大?最大值为多少?
20.已知正比例函数y=2x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为P点,已知△OAP的面积为1.
(1)求反比例函数的解析式;
(2)如果点B为反比例函数在第一象限图象上的点(点B与点A不重合),且点B的横坐标为2,在x轴上求一点M,使MA+MB最小.
21.如图,AB为⊙O的直径,弦CD∥AB,E是AB延长线上一点,∠CDB=∠ADE.
(1)DE是⊙O的切线吗?请说明理由;
(2)求证:AC2=CDBE;
(3)若AB=10,AC=4,求BE的长.
22.如图,二次函数y=﹣+2与x轴交于A、B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动.设PQ交直线AC于点G.
(1)求直线AC的解析式;
(2)设△PQC的面积为S,求S关于t的函数解析式;
(3)在y轴上找一点M,使△MAC和△MBC都是等腰三角形.直接
写出所有满足条件的M点的坐标;
(4)过点P作PE⊥AC,垂足为E,当P点运动时,线段EG的长度
是否发生改变,请说明理由.
参考答案与试题解析
一、选择题
1.【考点】一元二次方程的定义;方程的定义.
【专题】方程思想.
【分析】根据一元二次方程的定义:含有一个未知数,并且未知数的最高常数是2整式方程是一元二次方程.对每个方程进行分析,作出判断.
【解答】A:化简后不含二次项,不是一元二次方程;B:当a=0时,不是一元二次方程;C:是分式方程,不是整式方程,所以不是一元二次方程;D:符合一元二次方程的定义,是一元二次方程.故本题选D.
【点评】本题考查的是一元二次方程的定义,根据定义对每个方程进行分析,作出判断.
2.【考点】中心对称图形;轴对称图形.
【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形性质即可做出判断.
【解答】①既是中心对称图形,也是轴对称图形,故此选项正确;②不是中心对称图形,是轴对称图形,故此选项错误;③不是中心对称图形,是轴对称图形,故此选项错误;④是中心对称图形,不是轴对称图形,故此选项正确.故选:A.
【点评】主要考查了中心对称图形以及轴对称图形的定义,根据题意灵活区分定义是解决问题的关键
3.【考点】解一元二次方程-配方法.
【分析】利用完全平方公式配方即可求解.
【解答】把方程x2﹣4x+1=0配方,得(x﹣2)2=3,故选:B.
【点评】本题主要考查了解一元一次方程的配方法,解题的关键是熟记安全平方公式.
4.【考点】旋转的性质.
【分析】根据旋转的性质求出∠AOD和∠BOC的度数,计算出∠DOB的度数.
【解答】由题意得,∠AOD=31°,∠BOC=31°,又∠AOC=100°,∴∠DOB=100°﹣31°﹣31°=38°.故选:C.
【点评】本题考查的是旋转的性质,掌握旋转角、旋转方向和旋转中心的概念是解题的关键.
5.【考点】圆锥的计算.
【分析】首先连接AO,求出AB的长度是多少;然后求出扇形的弧长为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可.
【解答】如图1,连接AO, ∵AB=AC,点O是BC的中点,∴AO⊥BC,又∵∠BAC=90°,∴∠ABO=∠AC0=45°,∴AB=(m),∴==2π(m),∴将剪下的扇形围成的圆锥的半径是:2π÷2π=(m),∴圆锥的高是: =(m).故选:C.
【点评】此题主要考查了圆锥的计算,要熟练掌握,解答此题的关键是求出扇形围成的圆锥的底面半径是多少.
6.【考点】列表法与树状图法.
【分析】列举出所有情况,看所求的情况占总情况的多少即可.
【解答】每个骰子上都有6个数,那么投掷2次,将有6×6=36种情况,它们的点数都是4的只有1种情况,∴它们的点数都是4的概率是.故选D.
【点评】考查了列表法和树状图法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.注意本题是放回实验.
7.【考点】相似三角形的判定与性质;平行四边形的性质.
【分析】由平行四边形的性质易证两三角形相似,根据相似三角形的性质可解.
【解答】∵ABCD是平行四边形,∴AD∥BC,∴△BFE∽△DFA,∴BE:AD=BF:FD=1:3,∴BE:EC=BE:(BC﹣BE)=BE:(AD﹣BE)=1:(3﹣1),∴BE:EC=1:2.故选A.
【点评】本题考查了相似三角形的性质;其中由相似三角形的性质得出比例式是解题关键.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.
8.【考点】二次函数的图象;反比例函数的图象.
【专题】压轴题;数形结合.
【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.
【解答】由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.
【点评】本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.
9.【考点】抛物线与x轴的交点;一次函数图象上点的坐标特征.
【分析】①当m=2时,函数y=(m﹣2)x2+mx+1为一次函数,所以它的图象与坐标轴交点的个数为2;②当m≠2时,利用(m﹣2)x2+mx+1=0的根的个数,△=m2﹣4(m﹣2)=(m﹣2)2+4>0,得方程有两个不同的根,即函数与x轴的交点个数为2个,与y轴的交点个数为1,得出函数y=(m﹣2)x2+mx+1的图象与坐标轴交点的个数为3.
【解答】①当m=2时,y=2x+1,∴函数y=(m﹣2)x2+mx+1的图象与坐标轴交点的个数为2;②当m≠2时,函数y=(m﹣2)x2+mx+1的图象与x轴的交点个数即为方程(m﹣2)x2+mx+1=0的根的个数,∵△=m2﹣4(m﹣2)=(m﹣2)2+4>0,∴方程有两个不同的根,即函数与x轴的交点个数为2,与y轴的交点个数为1,∴当m≠2时,则函数y=(m﹣2)x2+mx+1的图象与坐标轴交点的个数为3.故选:D.
【点评】本题主要考查了抛物线与x轴的交点及一次函数图象与坐标的交点,解题的关键是分m=2和m≠2两种情况分析.
10.【考点】相似三角形的判定与性质;勾股定理;圆周角定理.
【专题】压轴题.
【分析】连接BD、CD,由勾股定理先求出BD的长,再利用△ABD∽△BED,得出=,可解得DE的长,由AE=AD﹣DE求解即可得出答案.
【解答】如图1,连接BD、CD,∵AB为⊙O的直径,∴∠ADB=90°,∴BD=
,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∴△ABD∽△BED,∴=,即=,解得DE=,
∴AE=AD﹣DE=5﹣=2.8.故选:B
【点评】此题主要考查了三角形相似的判定和性质及圆周角定理,解答此题的关键是得出△ABD∽△BED.
11.【考点】正多边形和圆;相似三角形的判定与性质.
【专题】计算题;压轴题.
【分析】先易证△ABC∽△BCD,再利用相似三角形的性质计算.
【解答】①BC是⊙A的内接正十边形的一边.由AB=AC,∠A=36°,得∠ABC=∠C=72°,又BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=
72°=∠C,∴BC=BD,∴BC=BD=AD,正确;②易证△ABC∽△BCD,∴,又AB=AC,故②正确,根据AD=BD=BC,即 解得BC=AC,故④正确,故选C.
【点评】本题主要考查了相似三角形的性质,对应边的比相等.
12.【考点】二次函数图象与系数的关系.
【专题】压轴题;数形结合.
【分析】根据题意画出相应的图形,由图象可得出a,b及c都大于0,即可对选项①和②作出判断,由x=1时对应的函数值在x轴上方,故将x=1代入函数解析式,得到a+b+c大于0,可得出选项③正确,由抛物线与x轴有两个不同的交点,得到根的判别式大于0,然后将其中的b换为4a,整理后可得出4a大于c,得到选项④正确,综上,得到正确的选项有3个.
【解答】∵抛物线y=ax2+bx+c中,4a﹣b=0,a﹣b+c>0,∴抛物线对称轴为直线x=﹣=﹣=﹣2,且x=﹣1对应二次函数图象上的点在x轴上方,又这两个交点之间的距离小于2,根据题意画出相应的图形,如图所示:可得:a>0,b>0,c>0,∴abc>0,故选项①错误,选项②正确;由图象可得:当x=1时,y=a+b+c>0,故选项③正确;∵抛物线与x轴有两个不同的交点,∴b2
﹣4ac>0,又4a﹣b=0,即b=4a,∴(4a)2﹣4ac>0,即4a(4a﹣c)>0,∴4a﹣c>0,即4a>c,故选项④正确,综上,正确的选项有②③④共3个.故选B
【点评】此题考查了二次函数图象与系数的关系,利用了数形结合的思想,根据题意画出相应的图形是解本题的关键.
二、填空题:
13.【考点】圆周角定理.
【分析】首先根据圆周角定理,可得同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,用⊙O的弦AB所对的圆心角除以2,求出∠C的度数为多少,然后用180°减去∠C,求出∠C′的度数是多少即可.
【解答】如图,∵∠AOB=50°,∴∠C=50°÷2=25°,∴∠C′=180°﹣25°=155°,即弦AB所对的圆周角的度数为25°或155°.故答案为:25°或155°.
【点评】此题主要考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
14.【考点】一元二次方程的应用.
【专题】几何动点问题;压轴题.
【分析】设点D从点A出发x秒时,则四边形DFCE的面积为20cm2.根据S四边形DECF=S△ABC﹣S△ADE﹣S△BDF,就可以求出结论.
【解答】设点D从点A出发x秒时,则四边形DFCE的面积为20cm2,由题意,得
,解得:x1=1,x2=5.故答案为:1或5.
【点评】本题考查了一元二次方程的运用及等腰直角三角形的性质的运用,三角形的面积公式的运用,解答时运用面积之间的关系建立方程是关键.
15.【考点】切线的性质;扇形面积的计算.
【分析】本题可设半圆的圆心为O,连接OD,则阴影部分的面积可用梯形ACDE和扇形AOD、△ODE的面积差来求得.已知了AE、BE的长,即可得知圆的直径和半径长.在Rt△ODE中,可根据OD和OE的长,求得∠DOE的度数,即可求得扇形AOD的圆心角,由此可求得△ODE和扇形AOD的面积.下面再求梯形ACDE的面积.关键是求出梯形的下底AC的长,连接AD,不难得出△ACD是个等边三角形,那么可在△ADE中求得AD的长,即可得出AC的长.由此可求出梯形的面积.根据上面分析的阴影部分面积的计算方法即可得出所求的值.
【解答】设圆的圆心是O,连接OD,OB.根据题意,得:圆的直径是4,则圆的半径是2.∴OE=BE=1.在Rt△ODE中,OD=2,OE=1,则∠DOE=60°,DE=;∴△OBD是等边三角形,∠AOD=120°.连接AD,则∠ADB=90°.∴∠DAB=30°,∴∠DAC=60°;又AC=CD,∴△ACD是等边三角形.∴AC=AD=2.则S梯形ACD=,S扇形AOD==π,S△ODE=∴阴影部分的面积是=4﹣,故答案为:4﹣.
【点评】此题考查了等边三角形的判定和性质以及梯形的面积公式和扇形的面积公式,解题的关键是能够发现等边三角形和30°的直角三角形,熟悉直角梯形、扇形和直角三角形的面积公式.
16.【考点】中心对称;坐标与图形性质.
【专题】规律型.
【分析】首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出An的坐标的规律,求出A2n+1的坐标是多少即可.
【解答】∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴An的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,An的纵坐标是,当n为偶数时,An的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故答案为:(4n+1,).
【点评】此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出An的横坐标、纵坐标各是多少.
三、解答题
17.【考点】游戏公平性;概率公式;列表法与树状图法.
【分析】(1)根据三张卡片的正面分别写有数字2,5,5,再根据概率公式即可求出答案;(2)根据题意列出图表,再根据概率公式求出和为7和和为10的概率,即可得出游戏的公平性.
【解答】(1)∵三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,
∴从中任意抽取一张卡片,该卡片上数字是5的概率为:;
故答案为:;
(2)根据题意列表如下:
2
5
5
2
(2,2)(4)
(2,5)(7)
(2,5)(7)
5
(5,2)(7)
(5,5)(10)
(5,5)(10)
5
(5,2)(7)
(5,5)(10)
(5,5)(10)
∵共有9种可能的结果,其中数字和为7的共有4种,数字和为10的共有4种,
∴P(数字和为7)=,P(数字和为10)=,
∴P(数字和为7)=P(数字和为10),
∴游戏对双方公平.
【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.
18.【考点】根的判别式;根与系数的关系.
【分析】(1)利用方程有两根不相等的实数根可以得到,解得m的取值范围即可;(2)假设存在,然后利用根的判别式求得m的值,根据m的值是否能使得一元二次方程有实数根作出判断即可.
【解答】(1)由,得m>﹣1
又∵m≠0
∴m的取值范围为m>﹣1且m≠0;(5分)
(2)不存在符合条件的实数m.(6分)
设方程两根为x1,x2则,
解得m=﹣2,此时△<0.
∴原方程无解,故不存在.(12分)
【点评】本题考查了根的判别式及根与系数的关系,解题的关键是利用方程的根的情况得到m的取值范围.
19.【考点】二次函数的应用.
【专题】几何图形问题.
【分析】(1)设花圃的宽AB为x米,则长BC=24﹣2x,从而可知0<24﹣2x≤10,从而可求得x的取值范围,然后利用矩形的面积公式可求得S与x的关系式;(2)先求得抛物线的对称轴方程为x=6,根据二次函数的性质和自变量的取值范围可知当x=7时长方形花圃的面积最大.
【解答】(1)设花圃的宽AB为x米,则长BC=(24﹣2x)米.
由矩形的面积公式可知:S=x(24﹣2x),
∴S=﹣2x2+24x.
∵墙的最大可用长度a为10米,
∴0<24﹣2x≤10.
解得:7≤x<12.
(2)∵a=﹣2,b=24,
∴x=﹣==6.
∵7≤x<12,a<0,
∴S随x的增大而减小.
∵当x=7时24﹣2x=10,即长为10米,宽为7米时面积最大,
∴长方形花圃的最大面积=70平方米.
【点评】本题主要考查的是二次函数的应用,依据二次函数的性质和自变量的取值范围求得当x=7时长方形花圃的面积最大是解题的关键.
20.【考点】反比例函数与一次函数的交点问题;轴对称-最短路线问题.
【分析】(1)设出A点的坐标,根据△OAP的面积为1,求出xy的值,得到反比例函数的解析式;(2)作点A关于x轴的对称点A′,连接A′B,交x轴于点M,得到MA+MB最小时,点M的位置,求出直线A′B的解析式,得到它与x轴的交点,即点M的坐标.
【解答】(1)设A点的坐标为(x,y),则OP=x,PA=y,
∵△OAP的面积为1,∴ xy=1,xy=2,即k=2,
∴反比例函数的解析式为:y=.
(2)作点A关于x轴的对称点A′,连接A′B,交x轴于点M,MA+MB最小,
点B的横坐标为2,点B的纵坐标为y==1,
两个函数图象在第一象限的图象交于A点,
2x=,x±1,y=±2,
A点的坐标(1,2),
A关于x轴的对称点A′(1,﹣2),
设直线A′B的解析式为y=kx+b,
,
解得,
直线y=3x﹣5与x轴的交点为(,0),
则M点的坐标为(,0).
【点评】本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定MA+MB最小时,点M的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式路线解答.
21.【考点】切线的判定;相似三角形的判定与性质.
【分析】(1)连接OD,由平行线的性质和已知条件得出∠ADC=∠BDE,再由等腰三角形的性质得出∠ADO=∠BDE,由圆周角定理得出∠ADO+∠ODB=90°,证出∠ODB+∠BDE=90°,即可得出结论;(2)证明△ACD∽△EBD,得出比例式=,再证出AC=BD,即可得出结论;(3)作CF⊥AB于点F,DG⊥AB于点G,先证明△ACF∽△ABC,得出对应边成比例=,求出AF=1.6,同理得出BG=1.6,求出FG=AB﹣AF﹣BG=6.8,证明四边形CDGF为矩形,得出CD=FG=6.8,由(2)的结论即可求出BE的长.
【解答】(1)解:DE是⊙O的切线;理由如下:
连接OD,如图1所示:
∵AB∥CD,∴∠ADC=∠BAD,
∵∠CDB=∠ADE,∴∠ADC=∠BDE,
∵OA=OD,∴∠BAD=∠ADO,
∴∠ADO=∠BDE,
∵AB是⊙O的直径,∴∠ADO+∠ODB=90°,
∴∠ODB+∠BDE=90°,即OD⊥DE,
∴DE是⊙O的切线;
(2)证明:∵四边形ABCD内接于⊙O,
∴∠DBE=∠ACD,
又由(1)得:∠ADC=∠BDE,
∴△ACD∽△EBD,
∴=,
又由(1)得:∠ADC=∠BAD,
∴AC=BD,
∴=,
即AC2=CDBE;
(3)解:作CF⊥AB于点F,DG⊥AB于点G,如图2所示:
∵AB是⊙O的直径,
∴∠ACB=90°,
在Rt△ACB中,CF⊥AB,
∴△ACF∽△ABC,
∴=,
∴=,
∴AF=1.6,
同理可得:BG=1.6,
∴FG=AB﹣AF﹣BG=10﹣1.6﹣1.6=6.8,
∵CF⊥AB、DG⊥AB、CD∥AB,
∴四边形CDGF为矩形,
∴CD=FG=6.8,
由(2)得:AC2=CDBE,
即42=6.8BE,
∴BE=.
【点评】本题考查了切线的判定、相似三角形的判定与性质、圆周角定理、等腰三角形的性质、矩形的判定与性质、圆内接四边形的性质等知识;本题综合性强,有一定难度,证明三角形相似是解决问题的关键.
22.【考点】二次函数综合题.
【分析】(1)直线AC经过点A,C,根据抛物线的解析式面积可求得两点坐标,利用待定系数法就可求得AC的解析式;(2)根据三角形面积公式即可写出解析式;(3)可以分腰和底边进行讨论,即可确定点的坐标;(4)过G作GH⊥y轴,根据三角形相似,相似三角形的对应边的比相等即可求解.
【解答】(1)∵二次函数y=﹣+2,
∴A点的坐标为(﹣2,0),与y轴交于点C(0,2),
∴c=2,
设直线AC的解析式是y=kx+b,由题意可知
,
解得:k=1,b=2,
即直线AC的解析式是y=x+2;
(2)当0<t<2时,
OP=(2﹣t),QC=t,
∴△PQC的面积为:S=(2﹣t)t=﹣t2+t,
当2<t≤4时,
OP=(t﹣2),QC=t,
∴△PQC的面积为:S=(t﹣2)t=t2﹣t,
(3))∵A(﹣2,0),B(2,0),C(0,2),
∴OA=OB=OC=2,
根据勾股定理,AC===2,
如图,①点M为坐标原点(0,0)时,AC、BC为底边,
②AC、BC为底边时,若OM=OC=2,则点M(0,﹣2),
若CM=AC=2,则OM=CM﹣OC=2﹣2,
此时点M(0,2﹣2),
或OM=CM+OC=2+2,
此时点M(0,2+2),
所以,点M的坐标为(0,0)或(0,﹣2)或(0,2﹣2)或(0,2+2).
(4)当P点运动时,线段EG的长度不变EG=,
理由如下:当0<t<2时,过G作GH⊥y轴,垂足为H.
由AP=t,可得AE=t,
由即,
解得:GH=1﹣t,
∴CG=GH=﹣t,
∴GE=AC﹣AE﹣GC=2﹣t﹣(﹣t)=,
即GE的长度不变.
当2<t≤4时,过G作GH⊥y轴,垂足为H.
由AP=t,可得AE=t,
由即,
∴GH(2+t)=t(t﹣2)﹣(t﹣2)GH,
∴GH(2+t)+(t﹣2)GH=t(t﹣2),
∴2tGH=t(t﹣2),
解得GH=,
∴CG=GH=,
于是,GE=AC﹣AE+GC=2﹣t+=,
即GE的长度不变.
综合得:当P点运动时,线段EG的长度不发生改变,为定值.
【点评】本题考查用待定系数法求二次函数和一次函数的解析式以及三角形的面积公式和相似三角形的性质,解题的难点在于分类讨论的数学思想的运用,要做到不重不漏的分析问题的存在性.