. .. . ..
学习参考
课题:有趣的算式
北师大版小学四年级上册第三单元
一、教学内容:
应用计算器进行运算,探索一些数学规律。(课本第 42、43 页的“探索发现(一)”内容。)
二、教学目标:
1、让学生学会在解决问题中应用以小推大、化繁为简的数学思想方法。
2、让学生体会探索数学规律和应用规律的方法(观察、发现、迁移、转化),感受数学美和
趣味性的同时,培养学生的观察、比较能力及探索知识的能力。
3、通过活动,激发学生的学习兴趣和思维灵活性。
三、教学重点:体会探索数学规律的方法,掌握用有规律的题组解决繁杂的计算的方法。
四、教学难点:通过对算式及其结果的特点进行比较,从中发现一些数学规律。
五、关键:借助计算器计算,对比算式结果发现并能应用规律。
六、教具准备: 电脑课件
七、学具准备: 电子计算器。稿纸。
八、教学过程:
一、创设情境,揭示课题,引出算式
老师讲述创编的“唐僧西天取经”童话故事:
同学们,你们看过《西游记》吗?在取经的路上,他们遇到了不少的困难,不过,他们
勇于去挑战困难,善于思考,最后取得了胜利;据说他们到了西天之后,如来佛把佛经放在
一座很高很高的山顶上,还在路上设了三关考验他们,这三关可有趣了,包含着许多数学知
识,愿意去挑战一下吗?好,准备开始了,我们一起来看看第一关是什么:
. .. . ..
学习参考
引出算式 111111×111111。
师:第一关,要走多少级台阶才能到达山顶?从山脚到山顶有 111111 层,每一层有 111111
级台阶,我们来数一数有几个 1,为了方便我们今天交流,遇到这样的数,我们就读作 6 个
1,要解决这个问题该怎么列式?
师:真聪明,这么短的时间就解决了这个问题。我们来看看 111111×111111 这个算式有意
思吧……你们猜猜孙悟空是用什么办法算出它的结果。
学生猜测。
师:同学们,猜不准孙悟空用什么方法算没关系,不过那位同学帮我们点明了接下来思考的
方向。
二、探索发现,掌握方法
师:这道题的 1 太多了,不好办,孙悟空确实是通过找规律算出来的,这就是我们这节课要
学习和探索的一种方法,大家看看这个算式,孙悟空把乘数中的 1 慢慢地减少,把它转化成
了和它相似的、比较简单的算式,我们一起来看看。
课件演示呈现下列算式:
1×1=1
11×11=121
111×111=12321
1111×1111=1234321
师:孩子们,我们静静地来观察这些算式。能发观规律吗?
1、生静静地观察算式 20 秒。
师:不着急说,和你的同桌交流一下你发现的规律是什么。
2、同桌交流所发现的规律。
. .. . ..
学习参考
师:孩子们,要算出这四个算式的结果,你们打算用什么方法?大家一起说吧。计算器…现
在用你们手中的计算器,计算出这几道算式。(7 分 30 秒)
计算器帮助了我们,我们也要善待它,请把它放在桌角,让它休息一会儿。
3、学生反馈计算结果。(直接读数字)
师:哪个同学愿意把你计算的结果跟大家交流一下,(直接说数字)跟他答案一样的请举手。
你们在计算时发现了什么规律啊?
4、学生反馈积的规律。
A、这是积的规律。
B、孩子你真聪明,懂得了把算式和结果合在一起观察了。
5、化繁为简、以小推大,应用规律推算出:按照这个规律,组织学生写出接下来的算式。
①、11111×11111=123454321 (11 分)
让学生说说推算过程。
②、111111111×111111111=12345678987654321
同学们,他说的答案是,正确的。
师:那现在你们能不能解决:(大家一起说结果)(13 分)
111111×111111=12345654321
师:同学们,现在再让你们用计算器去算,你们愿意用吗?
孩子们都很聪明,那我们推算出的结果是不是正确的呢,你们会用什么方法验证啊?
5、利用计算机验证推算的结果。
6、小结方法。(15 分)教师总结规律:通过观察积与乘数数中 1 的个数发现每一个乘数中
数字 1 的个数有几个,积的排列次序就从 1 排到几,再倒回到 1,所以每个积就像一座宝塔
似的。
. .. . ..
学习参考
师:同学们,我们用推算解决了 6 个 1 乘 6 个 1,是规律帮我们推算的,大家静静地回想一
下,我们是用什么方法闯过第一关的?同时再问问自己,我有没有信心闯过第二关?好,现
在静静地思考一下,第一关是怎么闯过来的。
三、迁移方法,应用规律
课件演示第二关题目:999999×999999=?
师:“999999×999999=?”同学们,计算器的位数不够,现在面对这样的问题,你们能不能
从闯过第一关的办法中得到一点启发呢?
师:有困难的请举手,说说困难是什么?
师:你们所说的都是和刚才第一关不一样的地方,那么,大家想想,这里和第一关一样的是
什么?想想,第一关解决问题的办法,能不能解决这一关呢?好,和前后桌的同学交流一下,
如果你们找到了办法,那就击掌庆贺一下好不好。
1、交流困难,同伴互助。
师:哪位同学找到办法了?
这样吧,你再慢慢地说一遍,老师课件演示:
9×9=
99×99=
999×999=
9999×9999=
师:你列出从小到大的题组,第二步你打算怎么做?
师板书:找出规律,应用规律
. .. . ..
学习参考
2、小结方法。(21)
师:同学们,像这样把一个复杂的算式转化成比较简单的几个算式,通过找这几个算式的规
律,最后推算出它的结果,这是我们数学常用的数学思想方法:化繁为简,以小推大。
3、操作寻找规律
每位学生先借助计算器算出小算式的得数,再推算,师巡视。
(1)指名学生上台交流规律与推算的方法。(23 分 30 秒)
师:你是沿着上面小的算式慢慢地慢慢地推算出它的结果对吧?这个算式里面肯定还有其它
的规律,你敢不敢接受老师围绕着这个题组考你几个问题啊?
那我想问一下,它的乘数跟它的结果有什么关系啊?乘数是 6 个 9,结果是几个 9?几个 8?
几个 0?几个 1?如果你能完整地说一遍就更好了,这样吧,我再考你一题:
( )×( )=99999980000001 对吗? 这样吧,你们当裁判,如果对了,你们
就掌声给她鼓励一下。要不要难一点考她?
( )×( )=9999999800000001 要不要再难一点?
3 个 9 乘 3 个 9 的积是几位数?
由老师提出问题,再由学生指名回答。
5 个 9 乘 5 个 9 的积是几位数?由学生说说自己的想法。
说说你是怎么算的? (28 分)
4、互动研讨,拓展思维。
学生围绕着规律出几道题考考老师或者其它同学。
师:同学们,你们已经能解决问题了,要是你们能够提出问题,那就更了不起了。这样吧,
换你们像老师一样,围绕这几个算式的规律,提几个问题考考老师也可以考考其他同学,怎
. .. . ..
学习参考
么样?(主要有三类)先不急着提,跟你的前后桌的同学商量一下,比谁的问题更有价值。
①、N 个 9 乘 N 个 9 积是多少?
②、N 个 9 乘 N 个 9 积是几位数?
③、积是 N 位数,?个 9 乘?个 9?
这样吧?我提个比较难的:8 个 3 乘 8 个 3 怎么办?只说方法,不说结果。课件演示:
3×3=9
33×33=1089
333×333=110889
3333×3333=11108889
教师总结规律:
它们的结果都以数字 98 开头,以 1 结尾,中间填 0,0 的个数是算式中一个乘数里 9 的个
数减 1 得来的。
5、生生互动、师生互动,交流这组算式的规律,体验应用规律口算大数的趣味。
师:同学们,有些规律是比较复杂的,有些规律有一些局限性,特别是像刚才那道 50 个 9
乘 50 个 9 这么样的算式,它的规律可能会发生一定的变化,这就要我们学习更多的数学知
识,更加认真地去学习观察的方法、找规律的方法。不过,要像生活中遇到这样的问题,我
们都可以把它化繁为简,以小推大,列出从小到大的几个题组,找出它的规律,再推算出后
面的结果,像这样的方法,在以后的生活和学习中都经常会用得到。有趣吧?
6、师生一起欣赏金字塔式的有趣算式,巧妙渗透数学美。
师:接下来孙悟空还把今天学习的这些算式排得非常得漂亮,我们一起来欣赏一下:
. .. . ..
学习参考
课件演示:
9
9×9=81
99×99=9801
999×999=998001
9999×9999=99980001
99999×99999=9999800001
999999×999999=999998000001
9999999×9999999=99999980000001
99999999×99999999=9999999800000001
999999999×999999999=999999998000000001
1
1×1=1
11×11=121
111×111=12321
1111×1111=1234321
11111×11111=123454321
111111×111111=12345654321
1111111×1111111=1234567654321
11111111×11111111=123456787654321
111111111×111111111=12345678987654321
四、运用方法,解决问题
师:生活中,像这么有趣的算式还有很多很多,比如说:虫食算、数字黑洞 6174、神奇的
数字,你们猜猜,这个神奇的数字是什么?
它是 142857,看似平凡的数字,它神奇在哪里呢?有什么神奇的啊?它啊,就是如来佛设
下的第三关,比前面两关都难,所以同学们要更加认真地去观察发现。
第三关:
组织学生观察下面四个算式。课件演示:(35 分 30 秒)
观察:142857×1=142857
142857×2=285714
142857×3=428571
142857×4=571428
推算:142857×5=( )
142857×6=( )
师:同学们,我们不急,还是用刚才的方法,先观察算式和它结果的方法来解决,
. .. . ..
学习参考
师:它的算式和结果有什么规律?
老师明确:推算是不能用计算器直接计算的。
1、发现“得数都还是由同样的那几个数字组成,只是它们的排列顺序发生了变化”的规律。
2、组织学生探究算式及其结果的规律,推算 142857×5=( )、142857×6=( )。
师:同学们,都停下来好吗?这道题确实是难了点,这样吧,老师来帮你们,你们看了这个
课件,应该就能推算出来。
课件演示它分别乘 1、2、3、4 的结果中数字的排列变化规律。
师:推算一下它乘 7 有这样的规律吗?为什么?
3、学生用计算器验证推算的结果后,老师再简单介绍与 142857 相关的史料文化。课件演
示:
①、1+4+2+8+5+7=27 2+7=9
②、14+28+57=99
③、142+857=999
教师总结规律:用 142857 的个位上的 7 乘第二个乘数,确定积的个位是几,然后在 142857
中找到这个数,把它及前面的数一起移到积的后面,剩余的一部分移到积的开头,如果剩余
两部分,把后面的部分放前面。如 142857×2,7×2=14,积的个位就是 4,先从 142857
中找到 4,把 4 及前面的 1 写在得数的后面,其余的 2857 就写在开头,所以 142857×2=
285714。
五、课堂小结,拓展延伸
1、学生说一说在这节课里有什么收获。
师:有科学家发现 142857 这个神奇的数字和 9 的联系这么紧密,肯定还有很多更奥秘的东
. .. . ..
学习参考
西,它说不定是解开我们宇宙的密码。继续探索好不好?可是下课铃快要响了,不知不觉当
中我们已经闯过三关了,这节课有收获吗?谁能用简单的一句话来说一说你收获了什么。
师:同学们,今天我们不仅体验了算式的有趣,更主要的是学会了找规律的方法,以及解决
问题的方法。
2、了解其它有趣的算式。
师:数学中有趣的算式远不止这些,还有很多,比如“数学黑洞 6174”。
呈现书 P43“第四关:寻找神秘的数”的内容,老师谈话激趣。
板书设计:
有趣的算式
化繁为简 列出题组 1×1=1
找出规律 应用规律 11×11=121
111×111=12321
1111×1111=1234321
1. 若不给自己设限,则人生中就没有限制你发挥的藩篱。2. 若不是心宽似海,哪有人生风平浪静。在纷杂的尘世里,为自己留下一片纯静的心灵空间,不管是潮起潮落,也不管是阴晴圆缺,你都可以免去浮躁,义无反顾,勇往直前,轻松自如地走好人生路上的每一步 3. 花一些时间,总会看清一些事。用一些事情,总会看清一些人。有时候觉得自己像个神经病。既纠结了自己,又打扰了别人。努力过后,才知道许多事情,坚持坚持,就过来了。4. 岁月是无情的,假如你丢给它的是一片空白,它还给你的也是一片空白。岁月是有情的,假如你奉献给她的是一些色彩,它奉献给你的也是一些色彩。你必须努力,当有一天蓦然回首时,你的回忆里才会多一些色彩斑斓,少一些苍白无力。只有你自己才能把岁月描画成一幅难以忘怀的人生画卷。