一、串联情境 唤醒旧知。
1.谈话:同学们,上节课我们通过研究冰淇淋盒的体积问题,学会了如何求圆柱的体积。你能说说如何求圆柱的体积吗?计算公式是怎样推出的?
2.口答练习:
你能借助公式计算下面圆柱的体积吗?
(1)底面半径 15厘米,高8厘米。
(2)底面直径 6米,高18米。
【设计意图】:通过复习公式,唤起学生的回忆,为下面利用公式解决打下基础。
二、巧用公式,解决问题。
1.出示课后练习第3题。
在美国加利福尼亚洲发现了一棵高达142米的巨衫。它的树干上下几乎一样粗,横截面周长约是38米。
师谈话:你能提出什么问题?
生:树干的体积会是多大呢?
师:知道了树干横截面的周长,该如何求体积呢?
2.学生独立解答。
3.交流算法。
4.师生总结解决此类问题的步骤:
(1)根据周长求出底面的半径。
(2)根据半径求出底面的面积。
(3)根据体积公式求出树干的体积。
【设计意图】:让学生明确已知圆柱底面周长,求圆柱体积的计算方法。
三、综合练习,统一公式。
1.出示课后练习第10题:计算下面图形的体积。
2.交流算法。
3.师谈话:你能把上面三种图形的体积公式统一成一个吗?
引导发现:体积=底面积×高
【设计意图】:通过计算,发现长方体、正方体、圆柱体的体积公式可以统一成一个,感受到它们之间的密切联系,有助于提高学生的综合实践能力。
四.拓展练习,提高能力。
1.出示练习第12题。
引导学生发现:体积相等、底面积也相等的圆柱和圆锥,圆锥的高是圆柱高的3倍。
2.出示练习13题。
(1)用62.8厘米的边长做圆柱形小桶的底面周长,47.1厘米的边长做圆柱小桶的高。
(2)用47.1厘米的边长做圆柱形小桶的底面周长,62.8厘米的边长做圆柱小桶的高。
3.课后思考:练习第14题。
【设计意图】:在拓展练习中提高学生的解决实际问题的能力。