2013小升初数学知识点之比和比例
比和比例
1.比的意义和性质
(1)比的意义
两个数相除又叫做两个数的比。
“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比
的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
比的后项不能是零。
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数
值。
(2)比的性质
比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
(3)求比值和化简比
求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数
或分数。
根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、
后项是互质的数。
(4)比例尺
图上距离:实际距离=比例尺
要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距
离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
(5)按比例分配
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的
方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
2、比例的意义和性质
(1)比例的意义
表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
(2)比例的性质
在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。
(3)解比例
根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一
个未知项。求比例中的未知项,叫做解比例。
3、正比例和反比例
(1)成正比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数
的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示 y/x=k(一定)
(2)成反比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数
的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示 x×y=k(一定)
2013小升初数学备考——小升初数学知识点之用字母表示
数
用字母表示数
1、用字母表示数的意义和作用
*用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。
2、用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式
(1)常见的数量关系
路程用 s 表示,速度 v 用表示,时间用 t 表示,三者之间的关系:
s=vt
v=s/t
t=s/v
总价用 a 表示,单价用 b 表示,数量用 c 表示,三者之间的关系:
a=bc
b=a/c
c=a/b
(2)运算定律和性质
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
减法的性质:a-(b+c)=a-b-c
(3)用字母表示几何形体的公式
长方形的长用 a 表示,宽用 b 表示,周长用 c 表示,面积用 s 表示。
c=2(a+b)
s=ab
正方形的边长 a 用表示,周长用 c 表示,面积用 s 表示。
c=4a
s=a2
平行四边形的底 a 用表示,高用 h 表示,面积用 s 表示。
s=ah
三角形的底用 a 表示,高用 h 表示,面积用 s 表示。
s=ah/2
梯形的上底用 a 表示,下底 b 用表示,高用 h 表示,中位线用 m 表示,面积用 s 表示。
s=(a+b)h/2
s=mh
圆的半径用 r 表示,直径用 d 表示,周长用 c 表示,面积用 s 表示。
c=∏d=2∏r
s=∏r2
扇形的半径用 r 表示,n 表示圆心角的度数,面积用 s 表示。
s=∏nr2/360
长方体的长用 a 表示,宽用 b 表示,高用 h 表示,表面积用 s 表示,体积用 v 表示。
v=sh
s=2(ab+ah+bh)
v=abh
正方体的棱长用 a 表示,底面周长 c 用表示,底面积用 s 表示,体积用 v 表示.
s=6a2
v=a3
圆柱的高用 h 表示,底面周长用 c 表示,底面积用 s 表示,体积用 v 表示.
s 侧=ch
s 表=s 侧+2s 底
v=sh
圆锥的高用 h 表示,底面积用 s 表示,体积用 v 表示.
v=sh/3
3、用字母表示数的写法
数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母
的前面。
当“1”与任何字母相乘时,“1”省略不写。
在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。
用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,
要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。
4、将数值代入式子求值
*把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,
再把数代入式子求值。字母表示的是数,后面不写单位名称。
*同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。
2013小升初数学备考——小升初数学知识点之简易方程
简易方程
(一)方程和方程的解
1、方程:含有未知数的等式叫做方程。
注意方程是等式,又含有未知数,两者缺一不可。
方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。
方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方
程才成立。
2、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
2013小升初数学备考——小升初数学知识点之简易方程
简易方程
(一)方程和方程的解
1、方程:含有未知数的等式叫做方程。
注意方程是等式,又含有未知数,两者缺一不可。
方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。
方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方
程才成立。
2、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
2013小升初数学备考——小升初数学知识点之几何的初步
知识
几何的初步知识
线和角
(1)线
*直线
直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。
*射线
射线只有一个端点;长度无限。
*线段
线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。
*平行线
在同一平面内,不相交的两条直线叫做平行线。
两条平行线之间的垂线长度都相等。
*垂线
两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂
线,相交的点叫做垂足。
从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。
(2)角
(1)从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫
做角的边。
(2)角的分类
锐角:小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。
周角:角的一边旋转一周,与另一边重合。周角是360°。
2013小升初数学备考——小升初数学知识点之平面图形
平面图形
1、长方形
(1)特征
对边相等,4个角都是直角的四边形。有两条对称轴。
(2)计算公式
c=2(a+b)
s=ab
2、正方形
(1)特征:
四条边都相等,四个角都是直角的四边形。有4条对称轴。
(2)计算公式
c=4a
s=a2
3、三角形
(1)特征
由三条线段围成的图形。内角和是180度。三角形具有稳定性。三角形有三条高。
(2)计算公式
s=ah/2
(3)分类
按角分
锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分
不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4、平行四边形
(1)特征
两组对边分别平行的四边形。
相对的边平行且相等。对角相等,相邻的两个角的度数之和为180度。平行四边形容易
变形。
(2)计算公式
s=ah
5、梯形
(1)特征
只有一组对边平行的四边形。
中位线等于上下底和的一半。
等腰梯形有一条对称轴。
(2)公式
s=(a+b)h/2=mh
6、圆
(1)圆的认识
平面上的一种曲线图形。
圆中心的一点叫做圆心。一般用字母 o 表示。
半径:连接圆心和圆上任意一点的线段叫做半径。一般用 r 表示。
在同一个圆里,有无数条半径,每条半径的长度都相等。
通过圆心并且两端都在圆上的线段叫做直径。一般用 d 表示。
同一个圆里有无数条直径,所有的直径都相等。
同一个圆里,直径等于两个半径的长度,即 d=2r。
圆的大小由半径决定。圆有无数条对称轴。
(2)圆的画法
把圆规的两脚分开,定好两脚间的距离(即半径);
把有针尖的一只脚固定在一点(即圆心)上;
把装有铅笔尖的一只脚旋转一周,就画出一个圆。
(3)圆的周长
围成圆的曲线的长叫做圆的周长。
把圆的周长和直径的比值叫做圆周率。用字母∏表示。
(4)圆的面积
圆所占平面的大小叫做圆的面积。
(5)计算公式
d=2r
r=d/2
c=∏d
c=2∏r
s=∏r2
7、扇形
(1)扇形的认识
一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
圆上 AB 两点之间的部分叫做弧,读作“弧 AB”。
顶点在圆心的角叫做圆心角。
在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。
扇形有一条对称轴。
(2)计算公式
s=n∏r2/360
8、环形
(1)特征
由两个半径不相等的同心圆相减而成,有无数条对称轴。
(2)计算公式
s=∏(R2-r2)
9、轴对称图形
(1)特征
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
折痕所在的这条直线叫做对称轴。
正方形有4条对称轴,长方形有2条对称轴。
等腰三角形有2条对称轴,等边三角形有3条对称轴。
等腰梯形有一条对称轴,圆有无数条对称轴。
菱形有4条对称轴,扇形有一条对称轴。
2013小升初数学备考——小升初数学知识点之立体图形
立体图形
(一)长方体
1特征
六个面都是长方形(有时有两个相对的面是正方形)。
相对的面面积相等,12条棱相对的4条棱长度相等。
有8个顶点。
相交于一个顶点的三条棱的长度分别叫做长、宽、高。
两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
把长方体放在桌面上,最多只能看到三个面。
长方体或者正方体6个面的总面积,叫做它的表面积。
2计算公式
s=2(ab+ah+bh)
V=sh
V=abh
(二)正方体
1特征
六个面都是正方形
六个面的面积相等
12条棱,棱长都相等
有8个顶点
正方体可以看作特殊的长方体
2计算公式
S 表=6a2
v=a3
(三)圆柱
1圆柱的认识
圆柱的上下两个面叫做底面。
圆柱有一个曲面叫做侧面。
圆柱两个底面之间的距离叫做高。
进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略
的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。
2计算公式
s 侧=ch
s 表=s 侧+s 底×2
v=sh/3
(四)圆锥
1圆锥的认识
圆锥的底面是个圆,圆锥的侧面是个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高。
测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地
量出平板和底面之间的距离。
把圆锥的侧面展开得到一个扇形。2计算公式
v=sh/3
(五)球
1认识
球的表面是一个曲面,这个曲面叫做球面。
球和圆类似,也有一个球心,用 O 表示。
从球心到球面上任意一点的线段叫做球的半径,用 r 表示,每条半径都相等。
通过球心并且两端都在球面上的线段,叫做球的直径,用 d 表示,每条直径都相等,直径
的长度等于半径的2倍,即 d=2r。
2计算公式
d=2r
2013小升初数学备考——小升初数学知识点之简单的统计
简单的统计
一统计表
(一)意义
*把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做
统计表。
(二)组成部分
*一般分为表格外和表格内两部分。表格外部分包括标的名称,单位说明和制表日期;表
格内部包括表头、横标目、纵标目和数据四个方面。
(三)种类
*单式统计表:只含有一个项目的统计表。
*复式统计表:含有两个或两个以上统计项目的统计表。
*百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百
分比的统计表。
(四)制作步骤
1搜集数据
2整理数据:
要根据制表的目的和统计的内容,对数据进行分类。
3设计草表:
要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每
格长度。
4正式制表:
把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和
制表日期。
2013小升初数学备考——小升初数学知识点之统计图
统计图
(一)意义
*用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。
(二)分类
1、条形统计图
用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直
线按照一定的顺序排列起来。
优点:很容易看出各种数量的多少。
注意:画条形统计图时,直条的宽窄必须相同。
取一个单位长度表示数量的多少要根据具体情况而确定;
复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期
下面注明图例。
制作条形统计图的一般步骤:
(1)根据图纸的大小,画出两条互相垂直的射线。
(2)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。
(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。
(4)按照数据的大小画出长短不同的直条,并注明数量。
2、折线统计图
用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连
接起来。
优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。
注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据
年份或月份的间隔来确定。
制作折线统计图的一般步骤:
(1)根据图纸的大小,画出两条互相垂直的射线。
(2)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。
(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。
(4)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。
3、扇形统计图
用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。
优点:很清楚地表示出各部分同总数之间的关系。
制扇形统计图的一般步骤:
(1)先算出各部分数量占总量的百分之几。
(2)再算出表示各部分数量的扇形的圆心角度数。
(3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。
(4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹
把各个扇形区别开。