1
3.4 函数的应用(一)
一、选择题
1.(2017·全国高一课时练习)拟定从甲地到乙地通话 m 分钟的话费符合
( )
( )
3.71,0 4
{ ?
1.06 0.5 2 , 4
m
f m
m m
=
+
其中 m 表示不超过 m 的最大整数,从甲地到乙地通话 5.2分钟的话
费是( )
A.3.71 B.4.24
C.4.77 D.7.95
【答案】C
【解析】 ( ) ( ) ( )5.2 1.06 0.5 5.2 2 1.06 2.5 2 4.77f = + = + = ,故选 C.
2.(2019·全国高一课时练习)某种图书,如果以每本 2.5元的价格出售,可以售出 8万本,若单价每提
高 0.1元,销售量将减少 2000 本,如果提价后的单价为 x 元,下列各式中表示销售总收入不低于 20 万元的
是( )
A. ( ) 8 0.2 2.5 20x x − − B. ( )80000 2000 2.5 20x x − −
C. ( ) 8 2 2.5 20x x − − D. ( ) 80000 20000 2.5 20x x − −
【答案】C
【解析】提价后的价格为 x 元,则提高了 ( )2.5x − 元,则销售减少了
2.5
2000
0.1
x −
本,即减少了 ( )2 2.5x −
万本,实际售出 ( )8 2 2.5x− − 万本,则总收入为 ( )8 2 2.5x x − − ,
故选:C
3.(2019·全国高一课时练习)某公司在甲、乙两地同时销售一种品牌车,利润(单位:万元)分别为 L1=-x
2
+21x
和 L2=2x,其中销售量为 x(单位:辆).若该公司在两地共销售 15 辆,则能获得的最大利润为( )
A.90 万元 B.120万元
C.120.25 万元 D.60 万元
【答案】B
【解析】设该公司在甲地销售 x 辆车,则在乙地销售(15-x)辆车,根据题意,总利润
y=-x
2
+21x+2(15-x)(0≤x≤15,x∈N),整理得 y=-x
2
+19x+30.因为该函数图象的对称轴为 x=
19
2
,开口向下,又
x∈N,所以当 x=9或 x=10时,y取得最大值 120万元.
2
4.(2018·全国高一课时练习)某宾馆共有客床 100 张,各床每晚收费 10 元时可全部住满,若每晚收费
每提高 2 元,便减少 10 张客床租出,则总收入 y(y>0)元与每床每晚收费应提高 x(假设 x 是 2 的正整
数倍)元的关系式为( )
A.y=(10+x)(100-5x)
B.y=(10+x)(100-5x),x∈N
C.y=(10+x)(100-5x),x=2,4,6,8,…,18
D.y=(10+x)(100-5x),x=2,4,6,8
【答案】C
【解析】依题意可知总收入的表达式为 ( )( )10 100 5y x x= + − ,由于 x 是2 的正整数倍,且5 100x ,即
20x ,故 2,4,6, 18x = .答案为C 选项.
5.(2017·全国高一课时练习)某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其
图象如下图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )
A.310 元 B.300 元 C.290 元 D.280 元
【答案】B
【解析】
设函数解析式为 ( )0y kx b k = + ,
函数图象过点(1,800),(2,1 300),
则
800
2 1300
k b
k b
+ =
+ =
解得
500
300
k
b
=
=
所以 500 300y x= + ,当 x=0 时,y=300.
所以营销人员没有销售量时的收入是 300 元.
答案:B
6.(2018·全国高一课时练习)在一次为期 15 天的大型运动会期间,每天主办方要安排专用大巴车接送
运动员到各比赛场馆参赛,每辆大巴车可乘坐 40 人,已知第 t 日参加比赛的运动员人数 M 与 t 的关系
3
是 M(t)= 2
30 60,1 6, ,
3 61 88,7 15, ,
t t t Z
t t t t Z
+
− + +
为了保证赛会期间运动员都能按时参赛,主办方应至少准备大
巴车的数量是( )
A.7 B.8
C.9 D.10
【答案】D
【解析】当1 6t 时,函数为一次函数,单调递增,当 6t = 时取得最大值,即
30 6 60
8
40
+
= .当7 15t
时,函数为开口向下的二次函数,其对称轴为
61
6
t = ,由于 t 为整数,故当 0t = 时取得最大值,即
300 610 88
10
40
− + +
,故选D .
二、填空题
7.(2019·全国高一课时练习)一个车辆制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩
托车数量 x (辆)与创造的价值 y (元)之间满足二次函数关系。已知产量为 0 时,创造的价值也为 0;当
产量为 55 辆时,创造的价值达到最大 6050元。若这家工厂希望利用这条流水线创收达到 6000元及以上,
则它应该生产的摩托车数量至少是 _____________ ;
【答案】50辆
【解析】由题意,设摩托车数量 x(辆)与创造的价值 y(元)之间满足二次函数 ( ) ( )
2
55 6050 0y a x a= − + ,
又 0, 0, 2x y a= = = − ,故
22 220y x x= − + ,则 22 220 6000x x− + ,解得50 60x ,
故答案为 50辆
8.(2018·全国高一课时练习)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的
电网销售电价表如下:
高峰时间段用电价格表 低谷时间段用电价格表
高峰月用
电量(单
位:千瓦时)
高峰电价
(单位:元/
千瓦时)
低谷月用
电量(单位:
千瓦时)
低谷电价
(单位:元/
千瓦时)
50及以下
的部分
0.568
50及以下
的部分
0.288
4
超过 50 至
200 的部分
0.598
超过 50 至
200 的部分
0.318
超过 200
的部分
0.668
超过 200
的部分
0.388
若某家庭 5月份的高峰时间段用电量为 200 千瓦时,低谷时间段用电量为 100 千瓦时,则按这种计费方
式该家庭本月应付的电费为____________元.(用数字作答)
【答案】145.4
【解析】在高峰时段,用电费用为50 0.568 150 0.598 118.1 + = ,低谷时段用电费用为
50 0.288 50 0.318 27.3 + = ,故总的费用为118.1 27.3 145.4+ = 元
9.(2017·全国高一课时练习)表示一位骑自行车和一位骑摩托车的旅行者在相距 80 km 的甲、乙两城间
从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下
信息:
①骑自行车者比骑摩托车者早出发 3 h,晚到 1 h;
②骑自行车者是变速运动,骑摩托车者是匀速运动;
③骑摩托车者在出发 1.5 h 后追上了骑自行车者;
④骑摩托车者在出发 1.5 h 后与骑自行车者速度一样.
其中,正确信息的序号是________.
【答案】①②③
【解析】
看时间轴易知①正确;骑摩托车者行驶的路程与时间的函数图象是直线,所以是匀速运动,而骑自行车者
行驶的路程与时间的函数图象是折线,所以是变速运动,因此②正确;两条曲线的交点的横坐标对应着 4.5,
故③正确,④错误.
故答案为①②③.
10.(2019·全国高一课时练习)某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为
5
10000 元,每天需要房租水电等费用 100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入 P 与
店面经营天数 x的关系是 P(x)=
21
300 ,0 300
2
45000, 300
x x x
x
−
则总利润最大时店面经营天数是___.
【答案】200
【解析】设总利润为 L(x),
则 L(x)=
21
200 10000,0 300
2
100 35000, 300
x x x
x x
− + −
− +
则 L(x)=
21
( 200) 10000,0 300
2
100 35000, 300
x x
x x
− − +
− +
当 0≤x