高二数学暑假作业9
加入VIP免费下载

高二数学暑假作业9

ID:748051

大小:1219442

页数:4页

时间:2021-07-08

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1 高二数学暑假作业 9 一、选择题(本大题共有 10 小题,每小题 5 分,共 50 分.在每小题所给的四个选项中,只 有一个选项是符合题目要求的.) 1.设 ,  是两个不同的平面,l 是一条直线,以下命题正确的是( ). A.若 ,l     ,则l  B.若 / / , / /l    ,则l  C.若 , / /l    ,则l  D.若 / / ,l    ,则 l  2.一空间几何体的三视图如图所示,则该几何体的体积为( ). A. 2 2 3  B. 4 2 3  C. 2 32 3   D. 2 34 3   3.已知向量       xxa ,2 1,8 ,  2,1,xb   ,其中 0x .若  ba// ,则 x 的值为( ) A.8 B.4 C.2 D.0 4.已知点 )3,2( A 、 )2,3( B 直线 l 过点 )1,1(P ,且与线段 AB 相交,则直线l 的斜率的取 值 k 范围是 ( ). A. 3 4k  或 4k   B. 3 4k  或 1 4k   C. 4 34  k D. 44 3  k 5.若动点 A(x1,y1),B(x2,y2)分别在直线 l1:x+y-7=0 和 l2:x+y-5=0 上移动,则 AB 中 点 M 到原点距离的最小值为( ). A.3 2 B.2 3 C.3 3 D.4 2 6. 设圆     053 222  rryx 上有且只有两个点到直线 0234  yx 的距离等于 1,则圆半径 r 的取值范围是 ( ) A. 5r B. 53  r C. 4r D. 64  r 7. 两圆相交于点 A(1,3)、B(m,-1),两圆的圆心均在直线 x-y+c=0 上,则 m+c 的值 为( ) A.-1 B.2 C.3 D.0 8.中心在原点, 准线方程为 x=±4, 离心率为 2 1 的椭圆方程为 A. 134 22  yx B. 143 22  yx C. 4 2x +y2=1 D. x2+ 4 2y =1 2 9.直线 3y x  与椭圆 2 2 2 2: 1( 0)x yC a ba b     交于 ,A B 两点,以线段 AB 为直径的圆过椭 圆的右焦点,则椭圆 C 的离心率为( ) A. 3 2 B. 3 1 2  C. 3 1 D. 4 2 3 10.双曲线 2 2 2 1( 0, 0)x y a ba b   2 - = 的一条渐近线的倾斜角为 3  ,离心率为 e ,则 2a e b + 的 最小值为( ) A. 2 6 3 B. 2 3 3 C. 2 3 D. 2 6 第 II 卷(非选择题 共 100 分) 二、填空题:本大题共 5 小题,每小题 5 分,共 25 分.把答案填在题中横线上. 11.一个水平放置的三角形的斜二侧直观图是等腰直角三角形 ' ' 'A B O ,若 ' ' 1O B  ,那么原 ABO 的面积是 . 12.圆 012222  yxyx 上的动点 Q 到直线 3x+4y+8=0 距离的最小值为______. 13.若直线 l1:ax+(1-a)y=3,与 l2:(a-1)x+(2a+3)y=2 互相垂直,则 a 的值为______. 14.设 O 为坐标原点,向量      2,1,1,1,1,2,3,2,1   OPOBOA ,点 Q 在直线 OP 上运动, 则当  QBQA 取最小值时,点 Q 的坐标为 15.已知抛物线 2: ( 0)C y ax a  的焦点到准线的距离为 1 4 ,且 C 上的两点 1 1 2 2( , ), ( , )A x y B x y 关于直线 y x m  对称,并且 1 2 1 2x x   ,那么 m  _______. 三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或演算步骤. 16.(12 分)已知平行四边形的两条边所在的直线方程分别是 x+y+1=0 和 3x-y+4=0,它 的对角线的交点是 M(3, 0), 求这个四边形的其它两边所在的直线方程. 17. (12 分)已知圆 x2+y2-2x-4y+m=0. (1)此方程表示圆,求 m 的取值范围; (2)若(1)中的圆与直线 x+2y-4=0 相交于 M、N 两点,且 OM⊥ON(O 为坐标原点),求 m 的值; 3 18.(12 分)已知矩形 ABCD 所在平面外一点 P,PA⊥平面 ABCD,E、F 分别是 AB、PC 的中点. (1) 求证:EF∥平面 PAD; (2) 求证:EF⊥CD; (3) 若∠PDA=45°,求 EF 与平面 ABCD 所成的角的大小. 19.(13 分)已知椭圆 2 2 2 2 1( 0)x y a ba b     的离心率为 3 2e  ,且过点( 13, 2 ), (1)求椭圆的方程; (2)设直线 : ( 0, 0)l y kx m k m    与椭圆交于 P,Q 两点,且以 PQ 为对角线的菱形的 一顶点为(-1,0),求:△OPQ 面积的最大值及此时直线的方程. 4 20.(13 分)已知抛物线 xy 42  ,焦点为 F,顶点为 O,点 P 在抛物线上移动,Q 是 OP 的中点,M 是 FQ 的中点,求点 M 的轨迹方程.(12 分) 21.(13 分)已知焦点在 x 轴上的双曲线 C 的两条渐近线过坐标原点,且两条渐近线与以点 )2,0(A 为圆心,1 为半径的圆相切,又知 C 的一个焦点与 A 关于直线 xy  对称. (1)求双曲线 C 的方程; (2)设直线 1 mxy 与双曲线 C 的左支交于 A,B 两点,另一直线l 经过 M(-2, 0)及 AB 的中点,求直线l 在 y 轴上的截距 b 的取值范围.(12 分)

资料: 1.5万

进入主页

人气:

10000+的老师在这里下载备课资料