5.1.2 垂线(第一课时) 教学目标 1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力. 2.了解垂直概念,能说出垂线的性质"经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线",会用三角尺或量角器过一点画一条直线的垂线. 教学重点 两条直线互相垂直的概念、性质和画法. 教学过程 一、创设问题情境,研究垂直等有关概念 1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线……,思考这些给大家什么印象? 在学生回答之后,教师指出:"垂直"两个字对大家并不陌生,但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容. 2.教师出示相交线的模型,演示模型,学生观察思考:固定木条a,转动木条,当b的位置变化时,a、b所成的角a是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系? 教师在组织学生交流中,应学生明白:当b的位置变化时,角a从锐角变为钝角,其中∠a是直角是特殊情况.其特殊之处还在于:当∠a是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等. 3.师生共同给出垂直定义.
师生分清"互相垂直"与"垂线"的区别与联系:"互相垂直"指两条直线的位置关系;"垂线"是指其中一条直线对另一条直线的命名。如果说两条直线"互相垂直"时,其中一条必定是另一条的"垂线",如果一条直线是另一条直线的"垂线",则它们必定"互相垂直"。 4.垂直的表示法. 垂直用符号"⊥"来表示,结合课本图5.1-5说明"直线AB垂直于直线CD,垂足为O",则记为AB⊥CD,垂足为O,并在图中任意一个角处作上直角记号,如图. 5.简单应用 (1)学生观察课本P6图5.1-6中的一些互相垂直的线条,并再举出生活中其他实例. (2)判断以下两条直线是否垂直: ①两条直线相交所成的四个角中有一个是直角; ②两条直线相交所成的四个角相等; ③两条直线相交,有一组邻补角相等; ④两条直线相交,对顶角互补. 二、画图实践,探究垂线的性质 1.学生用三角尺或量角器画已知直线L的垂线. (1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:还能画出L的垂线吗?能画几条?通过师生交流,使学生明确直线L的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形. 教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直. (2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论? 教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直. 教师让学生通过画图操作所得两条结论合并成一条,并板书:
垂线性质1:过一点有且只有一条直线与已知直线垂直. 2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图: (1)过点P画射线MN的垂线,Q为垂足; (2)过点P画射线BN的垂线,交射线BN反向延长线于Q点; (3)过点P画线段AB的垂线,交线AB延长线于Q点. 学生画完图后,教师归结:画一条射线或线段的垂线,就是画它们所在直线的垂线. 三、小结 本节学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗? 四、作业 1.课本P7练习,P9.3,4,5,9. 2.选用课时作业设计. 一、判断题. 1.两条直线互相垂直,则所有的邻补角都相等.( ) 2.一条直线不可能与两条相交直线都垂直.( ) 3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互为垂直.( ) 二、填空题. 1.如图1,OA⊥OB,OD⊥OC,O为垂足,若∠AOC=35°,则∠BOD=________. 2.如图2,AO⊥BO,O为垂足,直线CD过点O,且∠BOD=2∠AOC,则∠BOD=________. 3.如图3,直线AB、CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE与直线AB的位置关系是_________. 三、解答题.
1.已知钝角∠AOB,点D在射线OB上. (1)画直线DE⊥OB; (2)画直线DF⊥OA,垂足为F. 2.已知:如图,直线AB,垂线OC交于点O,OD平分∠BOC,OE平分∠AOC.试判断OD与OE的位置关系. 3.你能用折纸方法过一点作已知直线的垂线吗?