数学人教版七年级下册垂线(1)
加入VIP免费下载

数学人教版七年级下册垂线(1)

ID:813915

大小:133.5 KB

页数:6页

时间:2022-02-22

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
5.1.2 垂 线(1)教学目标:1.知道垂直是相交的特殊情况,理解垂线的概念.2.会用三角尺或量角器过一点画已知直线的垂线.3、通过操作、探究等活动,培养学生的动手能力,并通过活动使学生对知识的学习从感性认识上升到理性认识.4、通过生动、有趣的活动,使学生积极参与到数学活动中,并在活动中感受成功的快乐.教学重难点:【重点】 垂线的定义,用三角尺或量角器过一点画已知直线的垂线.【难点】 过一点画已知直线的垂线.教学设计导入一:出示意大利比萨斜塔图片.师:同学们,你们认识这个世界著名的建筑吗?对!是意大利的比萨斜塔.那么这个斜塔倾斜多少度呢?如图所示,直线AB可以看成地平面,射线OC可以看成塔身所在的直线.要回答这个问题,就涉及我们要学习的垂线问题.[设计意图] 从学生比较熟悉的事物中抽象出数学问题,更能唤起学生探求新知的欲望.导入二:(学生事先准备宽约为1cm,长约为20cm的两张硬纸条,图钉一个)课堂操作:学生用图钉在中间把两张纸条订在一起,提示学生可以把两张纸条看作是两条直线,观察两条直线相交有几个交点?如图所示,可以看到,直线AB与CD相交,只有一个交点,可以说明直线AB,CD相交于点O.【思考】 两条直线相交所构成的四个角能否相等?[设计意图] 用现实生活中的例子,引入相交线所成的角,为理解垂直的定义做认知准备,同时也会激发学生的学习兴趣,有利于进入新的知识学习.导入三:如图所示,直线AB,CD相交于点O,若∠1=90°,求其他三个角.教师出示问题,学生独立解决问题,并在练习本上书写解答过程.在这一过程中,教师应当关注学生是否能够独立完成问题,并且能否较规范地写出解答过程.然后学生口述过程并说明理由.[设计意图] 通过练习,一是复习上节课的邻补角和对顶角的概念及性质,二是逐步培养学生的推理论证能力.一、探究垂线的概念思路一   1.垂直的概念.  [过渡语] 相交线所形成的四个角中有邻补角、对顶角,都会形成怎样的角呢?请同学们观察老师手中的相交线模型.  利用相交线模型引入直线相互垂直的概念.  教师出示相交线模型,如图(1)所示,固定其中一个木条a,转动另一个木条b,在这一过程中,它们的交角∠α在不停地变化,这一过程中,一定会出现它们的交角等于90°的情况,这时我们说a与b互相垂直,这时其中一条直线叫另一条直线的垂线,记作a⊥b,它们的交点叫做垂足,如图(2)所示,可记作:AB⊥CD,垂足为O.  推理过程如下:因为∠AOC=90°(已知),所以AB⊥CD(垂直定义).[设计意图] 通过模型的展示让学生认识到,垂直是相交的一种特殊情形,使学生对垂直首先有一个感性的认识,进而引入相关的概念.同时通过教师对图形的描述,使学生逐步学习用几何语言描述图形的语句.[知识拓展] (1)垂直是相交线中一种特殊形式,当垂直时,这个公共点即为垂足.(2)线段与线段、线段与射线、射线与射线、线段与直线或射线与直线垂直,特指它们所在的直线互相垂直.(3)根据两条直线互相垂直的定义可知:若两条直线互相垂直,则所成的四个角都为直角;反之,若两条直线相交所成的四个角中的任意一个角等于90°,则这两条直线互相垂直.2.感受生活中互相垂直的实例.【思考】 生活中有许多垂直的例子,你能举出一些例子吗?教师出示图片:(提示学生观察铁轨和枕木之间的位置关系)学生从中观察相互垂直的直线,然后举出一些互相垂直的例子.[设计意图] 通过对实物的感知,使学生认识到生活中处处有数学图形,在感受生活中的数学的同时加深对垂线的理解与掌握.3.例题讲解(自设). 如图所示,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于(  )A.30°B.34°C.45°D.56°〔解析〕 ∠1和∠2既不是对顶角也不是邻补角,这就需要根据给出的∠1的度数和相关位置进行思考.根据已知条件,把CO⊥AB转化为∠AOC=∠COB=90°是关键.发现∠AOD,∠DOB分别是∠2的邻补角和对顶角后,问题即可解决.方法1:因为CO⊥AB,所以∠COB=90°,所以∠DOB=90°-∠1=90°-56°=34°.所以∠2=∠DOB=34°(对顶角相等).方法2:因为CO⊥AB,所以∠COB=90°,所以∠AOD=90°+∠1=90°+56°=146°.所以∠2=180°-146°=34°(邻补角互补).故选B.[设计意图] 角度计算题, 目的是考查学生利用垂直定义以及对顶角性质解决问题的能力.思路二1.实验探究.教师自制教具,将两根木条钉在一起(如图所示),固定其中一根木条a,转动木条b,请学生观察:问题:在木条b的转动过程中,哪个量也随之发生改变?师生活动:学生发言,相互补充.教师借机和学生一起回忆上节课学习的内容:对顶角和邻补角的概念和性质.教师追问(1):当a与b所成角α为90°时,其余各角分别为多少度?师生活动:教师引导学生发现,当a与b所成角α为90°时,其余各角都为90°,是木条相交中最特殊的一种情况.教师追问(2):这时木条a与b有何位置关系呢?师生活动:学生根据小学已学的知识可以知道,此时木条a与b互相垂直.[设计意图] 让学生借助已有的知识发现数学问题,并解决问题,进一步提高对垂直概念的认识.2.变换角度,认识垂直.仔细观察下图,当两条直线相交时所形成的4个角中,有一个角为90°,可以得出这两条直线有何位置关系呢?师生活动:学生回答,并归纳概括出垂直的定义.教师补充指出垂线和垂足的概念,并给出垂直的符号表示.教师追问(1):如图所示,如何用符号语言表示垂直的定义呢?师生活动:学生观察图形,独立完成用符号语言表示垂直的定义,教师点拨,规范学生的书写过程.如图所示,若AB和CD相交,且∠1=90°,则直线AB和CD互相垂直,记作“AB⊥CD”(或CD⊥AB),读作“AB垂直于CD”.如果垂足是O,记作“AB⊥CD,垂足为O”.一般地,垂直在图中用“”表示,在推理计算的过程中用“⊥”表示.教师追问(2):如何判定两条射线互相垂直?两条线段呢?师生活动:学生积极踊跃发言,教师做总结,提醒学生注意:两条线段垂直、两条射线垂直、射线与直线垂直、线段与射线垂直、线段与直线垂直,都是指它们所在的直线垂直.根据两条直线互相垂直的定义可知:若两条直线互相垂直,则相交所成的四个角为直角; 反之,若两条直线的交角为直角,则这两条直线互相垂直.如图所示,这个推理过程可以写成:因为AB⊥CD(已知),所以∠AOC=∠COB=∠BOD=∠AOD=90°(垂直的定义);反之,因为∠AOC=90°(已知),所以AB⊥CD.[设计意图] 教师引导学生用几何语言描述图形的位置关系,并学会用符号语言表示,培养学生表达几何图形的能力.教师追问(3):你能举出一些生活中与垂直有关的实例吗?[设计意图] 学生列举身边的实物,能由实物的形状想象出直线的垂直关系,将新知识应用到对周围环境的直接感知中,有利于学生建立直观、形象的数学模型.二、垂线的画法和性质  [过渡语] 在一条直线上可以画无数条这条直线的垂线,那么经过直线外一点可以画几条这样的直线呢?利用三角尺或量角器,可以过一点画出已知直线的垂线.下面我们来学习垂线的画法.问题:1.用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?  2.经过直线l上一点A画l的垂线,这样的垂线能画出几条?  3.经过直线l外一点B画l的垂线,这样的垂线能画出几条?画法点拨:过一点画已知直线的垂线,可以用直角三角板来画,具体步骤为:(1)贴:将三角板的一条直角边紧贴在已知直线上;(2)过:使三角板的另一直角边经过已知点;(3)画:沿已知点所在直角边画出所求的直线.如图所示,图(1)是点在直线l上,图(2)是点在直线l外.两直线垂直的概念中的核心内容是直角,所以在画垂线时这个直角的位置就显得相当重要了,画错了位置,已知直线的垂线也就画错了.在画垂线时要注意让直角的一边与已知直线重合,而另一边要过已知点(即过此点画已知直线的垂线),在画垂线时要注意只有满足上述条件时,这两条直线才是垂直的.另外要画的已知直线的垂线是一条直线,千万不要画成线段或射线.提示:(1)过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上.(2)过一点包括两种情况:①点在直线外;②点在直线上.活动方式:教师出示问题,学生分小组讨论尝试,然后找学生回答讨论的结果,并找学生到黑板上画一画.师生共同归纳结论:经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线,即在同一平面内,过一点有且只有一条直线与已知直线垂直.[设计意图] 通过尝试、讨论、探究,找到画已知直线垂线的方法,使学生手脑并用,加深印象.通过师生的共同总结,培养学生的归纳总结能力,同时让学生认识到作已知直线的垂线的两种情况. (补充)如图(1)所示,在三角形ABC中,∠BCA为钝角.(1)画出过点C且与线段BA垂直的直线;(2)画出过点A且与线段BC垂直的直线.〔解析〕 利用三角尺的直角正确画出图形,注意垂足的位置.(1)过点C作AB的垂线,垂足在线段AB上.(2)因为∠BCA是钝角,过点A画BC的垂线时,垂足在BC的延长线上.解:(1)过点C画AB的垂线,交AB于D,CD就是所求,如图(2)所示.(2)过点A画BC的垂线,交BC的延长线于E点,AE就是要求的垂线,如图(2)所示. [知识拓展] (1)在同一平面内,经过直线上一点或直线外一点画已知直线的垂线,只能画出一条.(2)经过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在射线的反向延长线或线段的延长线上(如图所示).(3)画垂线时是实线,此时如需延长线段或反向延长射线,要用虚线延长或反向延长.课堂小结:1.垂线的概念:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.2.垂线的性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)“有且只有”中,“有”指“存在性”,“只有”指“唯一性”.(3)“过一点”中的“点”在直线上或直线外都可以.课堂检测:1.下列说法中,正确的个数是(  )①相等的角是对顶角;②在同一平面内,过一点有且只有一条直线和已知直线垂直;③两条直线相交有且只有一个交点;④两条直线相交成直角,则这两条直线互相垂直.A.1B.2C.3D.4解析:两角相等指的是数量关系上的相等,对顶角是特殊位置关系的相等的角,故①错误;在同一平面内,过一点有且只有一条直线和已知直线垂直,故②正确;两条直线相交有且只有一个交点,故③正确;两条直线相交成直角,则这两条直线互相垂直,故④正确.即正确的个数是3.故选C.2.下列四个条件中能判断两条直线互相垂直的有(  )①两条直线相交所成的四个角中,有一个角是直角;②两条直线相交所成的四个角相等;③两条直线相交所成的四个角中,有一组相邻的角相等;④两条直线相交所成的四个角中,有一组对顶角的和为180°.A.4个B.3个C.2个D.1个解析:①两条直线相交所成的四个角中有一个角是直角,是定义,能判断;②两条直线相交所成的四个角相等,则四个角都是直角,能判断;③两条直线相交所成的四个角中有一组相邻的角相等,根据邻补角的定义能求出这两个角都是直角,能判断;④两条直线相交所成的四个角中有一组对顶角的和为180°,根据对顶角相等求出这两个角都是直角,能判断.所以四个条件都能判断两条直线互相垂直.故选A.3.如图所示,过P点,画出射线OA,OB的垂线.解析:图(1)的P点在射线OA,OB之外,图(2)的P点在射线OA之外,在射线OB之上.图(2)过点P作射线OA的垂线时,要注意垂足在射线OA的反向延长线上,需要用虚线表示延长线.解:如图所示. 4.如图所示,直线AB,CD相交于点O,OE⊥CD,OF⊥AB,∠BOD=25°,求∠AOE和∠DOF的度数.解:因为OE⊥CD,OF⊥AB,∠BOD=25°,所以∠AOE=90°-25°=65°,∠DOF=90°+25°=115°.布置作业:【必做题】教材第5页练习第1,2题.【选做题】教材第8页习题5.1第3,4题.

10000+的老师在这里下载备课资料