垂线【教学目标】1.经历观察、操作、想象、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力。2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线。【教学重点】两条直线互相垂直的概念、性质和画法。【教学过程】【第一课时】一、创设问题情境,研究垂直等有关概念1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线……,思考这些给大家什么印象?在学生回答之后,教师指出:“垂直”两个字对大家并不陌生,但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容。2.教师出示相交线的模型,演示模型,学生观察思考:固定木条A,转动木条,当B的位置变化时,A、B所成的角A是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,A、B所成的四个角有什么特殊关系?教师在组织学生交流中,应学生明白:当B的位置变化时,角A从锐角变为钝角,其中∠A是直角是特殊情况。其特殊之处还在于:当∠A是直角时,它的邻补角,对顶角都是直角,即A、B所成的四个角都是直角,都相等。3.师生共同给出垂直定义。师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”。4.垂直的表示法。垂直用符号“⊥”来表示,结合课本说明“直线AB垂直于直线CD,垂足为O”,则记为AB⊥CD,垂足为O,并在图中任意一个角处作上直角记号,如图。5.简单应用
(1)学生观察课本中的一些互相垂直的线条,并再举出生活中其他实例。(2)判断以下两条直线是否垂直:①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交,有一组邻补角相等;④两条直线相交,对顶角互补。二、画图实践,探究垂线的性质1.学生用三角尺或量角器画已知直线L的垂线。(1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线。待学生上黑板画出L的垂线后,教师追问学生:还能画出L的垂线吗?能画几条?通过师生交流,使学生明确直线L的垂线有无数多条,即存在,但有不确定性。教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形。教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直。(2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论?教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直。教师让学生通过画图操作所得两条结论合并成一条,并板书:垂线性质1:过一点有且只有一条直线与已知直线垂直。2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图:(1)过点P画射线MN的垂线,Q为垂足;(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;(3)过点P画线段AB的垂线,交线AB延长线于Q点。学生画完图后,教师归结:画一条射线或线段的垂线,就是画它们所在直线的垂线。三、小结本节学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗?
垂线【教学目标】1.经历观察、操作、想象、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力。2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,并会度量点到直线的距离。【教学重难点】重点:“垂线段最短”的性质,点到直线的距离的概念及其简单应用。难点:对点到直线的距离的概念的理解。【教学过程】【第二课时】一、创设问题情境,探究垂线段最短的垂线性质1.教师展示课本图,提出问题:要把河中的水引到农田P处,如何挖渠能使渠道最短?学生看图、思考。2.教师以问题串形式,启发学生思考。(1)问题1,上学期我们曾经学过什么最短的知识,还记得吗?学生说出:两点间线段最短。(2)问题2,如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线L,那么原问题就是怎么的数学问题。问题2使学生能用数学眼光思考:在连接直线L外一点P与直线L上各点的线段中,哪一条最短?3.教师演示教具,给学生直观的感受。教具如图:在硬纸板上固定木条L,L外一点P,转动的木条A一端固定在点P。使木条L与A相交,左右摆动木条A,L与A的交点A随之变化,线段PA长度也随之变化。PA最短时,A与L的位置关系如何?用三角尺检验。4.学生画图操作,得出结论。(1)画出直线L,L外一点P;(2)过P点出PO⊥L,垂足为O;(3)点A1,A2,A3……在L上,连接PA1、PA2、PA3……;
(4)用叠合法或度量法比较PO、PA1、PA2、PA3……长短。5.师生交流,得出垂线的另一条性质。教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。关于垂线段教师可让学生思考:(1)垂线段与垂线的区别联系。(2)垂线段与线段的区别与联系。初步应用。练习1:已知直线A、B,过点A上一点A作AB⊥A,交B于点B,过B作BC⊥B交A上于点C。请说出哪一条线段的长是哪一点到哪一条直线的距离?并且用刻度尺测量这个距离。练习2:课本中水渠该怎么挖?在图上画出来。如果图中比例尺为1:100000,水渠大约要挖多长?练习3:判断正确与错误,如果正确,请说明理由,若错误,请订正。(1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离。(2)如图,线段AE是点A到直线BC的距离。(3)如图,线段CD的长是点C到直线AB的距离。学生独立完成,教师组织学生交流、评价。