5.1.2垂线(2)【学习目标】1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,培养学生用几何语言准确表达的能力。毛2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,并会度量点到直线的距离。【自主学习】1.上学期我们学习过“什么什么最短”的几何知识,还记得吗?。2.思考课本P5图5.1-8中提出问题:要把河中的水引到农田P处,如何挖渠能使渠道最短?3.自学课本P5-6页的内容后,你能解决2中提出的问题吗?若不能,有哪方面的困惑?【合作探究】1.问题转化如果把小河看成是直线L,把要挖的渠道看成是一条线段,则该线段的一个端点自然是农田P,另一个端点就是直线L上的某个点。那么最短渠道问题会变成是怎样的数学问题?(提示:用数学眼光思考:在连接直线L外一点P与直线L上各点的线段中,哪一条最短?)2.画图验证(1)画直线L,在L外取一点P;(2)过P点出PO⊥L,垂足为O;(3)点A1,A2,A3……在L上,连接PA、PA2、PA3……;(4)用度量法比较线段PO、PA1、PA2、PA3……的大小,.得出线段最小。3.归纳结论.连接直线外一点与直线上各点的所有线段中,.简单说成:.4.知识类比(1)垂线段与垂线有何区别联系?(2)垂线段与线段有何区别与联系?5.解决问题:此时你会解决课本P5图5.1-8中提出的问题吗?在图形中画出“最短渠道”的位置。6.探究“点到直线的距离”?定义:(1)学习课本P6第二段内容回答什么叫“点到直线的距离”?默写一遍:叫做点到直线的距离。(2)对照课本P5图5.1-9,回答线段PO、PA1、PA2、PA3、PA4……
中,哪一条或几条线段的长度是点P到直线L的距离?(3)如果课本P5图5.1-8中比例尺为1:,试计算农田P到小河的距离有多远?【运用举例】例1:判断对错,并说明理由:.(1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离.(2)如图,线段AE是点A到直线BC的距离.(3)如图,线段CD的长是点C到直线AB的距离.例:2:已知直线a、b,过点a上一点A作AB⊥a,交b于点B,过B作BC⊥b交a于点C.请说出哪一条线段的长是哪一点到哪一条直线的距离?并且用刻度尺测量这个距离.【达标测评】1.如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC=6,那么点C到AB的距离是_______,点A到BC的距离是________,点B到CD的距离是_____,A、B两点的距离是_________.2.如图,在线段AB、AC、AD、AE、AF中AD最短.小明说垂线段最短,因此线段AD的长是点A到BF的距离,对小明的说法,你认为对吗?3.用三角尺画一个是30°的∠AOB,在边OA上任取一点P,过P作PQ⊥OB,垂足为Q,量一量OP的长,你发现点P到OB的距离与OP长的关系吗?