2021年天津市中考中考数学试卷
加入VIP免费下载

2021年天津市中考中考数学试卷

ID:895807

大小:522 B

页数:18页

时间:2022-02-26

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2021年天津市中考中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣5)×3的结果等于(  )A.﹣2B.2C.﹣15D.152.tan30°的值等于(  )A.B.C.1D.23.据2021年5月12日《天津日报》报道,第七次全国人口普查数据公布,普查结果显示,全国人口共141178万人.将141178用科学记数法表示应为(  )A.0.141178×106B.1.41178×105C.14.1178×104D.141.178×1034.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是(  )A.B.C.D.5.如图是一个由6个相同的正方体组成的立体图形,它的主视图是(  )A.B.C.D.6.估计的值在(  )A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.方程组的解是(  )A.B.C.D.8.如图,▱ABCD的顶点A,B,C的坐标分别是(0,1),(﹣2,﹣2),(2,﹣2),则顶点D的坐标是(  )A.(﹣4,1)B.(4,﹣2)C.(4,1)D.(2,1)9.计算﹣的结果是(  )A.3B.3a+3bC.1D.10.若点A(﹣5,y1),B(1,y2),C(5,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是(  )A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y1<y211.如图,在△ABC中,∠BAC=120°,将△ABC绕点C逆时针旋转得到△DEC,点A,第18页(共18页) B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是(  )A.∠ABC=∠ADCB.CB=CDC.DE+DC=BCD.AB∥CD12.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点(﹣1,﹣1),(0,1),当x=﹣2时,与其对应的函数值y>1.有下列结论:①abc>0;②关于x的方程ax2+bx+c﹣3=0有两个不等的实数根;③a+b+c>7.其中,正确结论的个数是(  )A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18分)13.计算4a+2a﹣a的结果等于  .14.计算(+1)(﹣1)的结果等于  .15.不透明袋子中装有7个球,其中有3个红球、4个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是  .16.将直线y=﹣6x向下平移2个单位长度,平移后直线的解析式为  .17.如图,正方形ABCD的边长为4,对角线AC,BD相交于点O,点E,F分别在BC,CD的延长线上,且CE=2,DF=1,G为EF的中点,连接OE,交CD于点H,连接GH,则GH的长为  .18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上.(Ⅰ)线段AC的长等于  ;(Ⅱ)以AB为直径的半圆的圆心为O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P,并简要说明点P的位置是如何找到的(不要求证明)  .第18页(共18页) 三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得  ;(Ⅱ)解不等式②,得  ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为  .20.(8分)某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月均用水量(单位:t).根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的家庭个数为  ,图①中m的值为  ;(Ⅱ)求统计的这组月均用水量数据的平均数、众数和中位数.21.(10分)已知△ABC内接于⊙O,AB=AC,∠BAC=42°,点D是⊙O上一点.(Ⅰ)如图①,若BD为⊙O的直径,连接CD,求∠DBC和∠ACD的大小;(Ⅱ)如图②,若CD∥BA,连接AD,过点作⊙O的切线,与OC的延长线交于点E,求∠E的大小.22.(10分)如图,一艘货船在灯塔C的正南方向,距离灯塔257海里的A处遇险,发出求救信号.一艘救生船位于灯塔C的南偏东40°方向上,同时位于A处的北偏东60°方向上的B处,救生船接到求救信号后,立即前往救援.求AB第18页(共18页) 的长(结果取整数)参考数据:tan40°≈0.84,取1.73.23.(10分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km,陈列馆离学校20km.李华从学校出发,匀速骑行0.6h到达书店;在书店停留0.4h后,匀速骑行0.5h到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5h后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离ykm与离开学校的时间xh之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开学校的时间/h0.10.50.813离学校的距离/km2    12  (Ⅱ)填空:①书店到陈列馆的距离为  km;②李华在陈列馆参观学习的时间为  h;③李华从陈列馆回学校途中,减速前的骑行速度为  km/h;④当李华离学校的距离为4km时,他离开学校的时间为  h.(Ⅲ)当0≤x≤1.5时,请直接写出y关于x的函数解析式.24.(10分)在平面直角坐标系中,O为原点,△OAB是等腰直角三角形,∠OBA=90°,BO=BA,顶点A(4,0),点B在第一象限,矩形OCDE的顶点E(﹣,0),点C在y轴的正半轴上,点D在第二象限,射线DC经过点B.(Ⅰ)如图①,求点B的坐标;(Ⅱ)将矩形OCDE沿x轴向右平移,得到矩形O′C′D′E′,点O,C,D,E的对应点分别为O′,C′,D′,E′.设OO′=t,矩形O′C′D′E′与△OAB重叠部分的面积为S.第18页(共18页) ①如图②,当点E′在x轴正半轴上,且矩形O′C′D′E′与△OAB重叠部分为四边形时,D′E′与OB相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤t≤时,求S的取值范围(直接写出结果即可).25.(10分)已知抛物线y=ax2﹣2ax+c(a,c为常数,a≠0)经过点C(0,﹣1),顶点为D.(Ⅰ)当a=1时,求该抛物线的顶点坐标;(Ⅱ)当a>0时,点E(0,1+a),若DE=2DC,求该抛物线的解析式;(Ⅲ)当a<﹣1时,点F(0,1﹣a),过点C作直线l平行于x轴,M(m,0)是x轴上的动点,N(m+3,﹣1)是直线l上的动点.当a为何值时,FM+DN的最小值为2,并求此时点M,N的坐标.第18页(共18页) 2021年天津市中考中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣5)×3的结果等于(  )A.﹣2B.2C.﹣15D.15【解答】解:(﹣5)×3=﹣(5×3)=﹣15,故选:C.2.tan30°的值等于(  )A.B.C.1D.2【解答】解:tan30°=.故选:A.3.据2021年5月12日《天津日报》报道,第七次全国人口普查数据公布,普查结果显示,全国人口共141178万人.将141178用科学记数法表示应为(  )A.0.141178×106B.1.41178×105C.14.1178×104D.141.178×103【解答】解:141178=1.41178×105.故选:B.4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是(  )A.B.C.D.【解答】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:A.5.如图是一个由6个相同的正方体组成的立体图形,它的主视图是(  )A.B.C.D.【解答】解:从正面看,从左到右有三列,每列的小正方形的个数分别为1、2、2.故选:D.6.估计的值在(  )第18页(共18页) A.2和3之间B.3和4之间C.4和5之间D.5和6之间【解答】解:∵≈4.12,∴的值在4和5之间.故选:C.7.方程组的解是(  )A.B.C.D.【解答】解:由②﹣①,得:2x=2,∴x=1,把x=1代入①式,得:1+y=2,解得:y=1,所以,原方程组的解为.故选:B.8.如图,▱ABCD的顶点A,B,C的坐标分别是(0,1),(﹣2,﹣2),(2,﹣2),则顶点D的坐标是(  )A.(﹣4,1)B.(4,﹣2)C.(4,1)D.(2,1)【解答】解:∵(﹣2,﹣2),(2,﹣2),∴BC=2﹣(﹣2)=2+2=4,∵四边形ABCD是平行四边形,∴AD=BC=4,∵点A的坐标为(0,1),∴点D的坐标为(4,1),故选:C.9.计算﹣的结果是(  )A.3B.3a+3bC.1D.【解答】解:﹣===3,故选:A.10.若点A(﹣5,y1),B(1,y2),C(5,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是(  )A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y1<y2第18页(共18页) 【解答】解:∵反比例函数y=﹣中,k=﹣5<0,∴函数图象的两个分支分别位于二四象限,且在每一象限内,y随x的增大而增大.∵﹣5<0,0<1<5,∴点A(﹣5,y1)在第二象限,点B(1,y2),C(5,y3)在第四象限,∴y2<y3<y1.故选:B.11.如图,在△ABC中,∠BAC=120°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是(  )A.∠ABC=∠ADCB.CB=CDC.DE+DC=BCD.AB∥CD【解答】解:由旋转的性质得出CD=CA,∠EDC=∠CAB=120°,∵点A,D,E在同一条直线上,∴∠ADC=60°,∴△ADC为等边三角形,∴∠DAC=60°,∴∠BAD=60°=∠ADC,∴AB∥CD,故选:D.12.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点(﹣1,﹣1),(0,1),当x=﹣2时,与其对应的函数值y>1.有下列结论:①abc>0;②关于x的方程ax2+bx+c﹣3=0有两个不等的实数根;③a+b+c>7.其中,正确结论的个数是(  )A.0B.1C.2D.3【解答】解:①∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点(﹣1,﹣1),(0,1),∴c=1,a﹣b+c=﹣1,∴a=b﹣2,∵当x=﹣2时,与其对应的函数值y>1.∴4a﹣2b+1>1,∴4(b﹣2)﹣2b+1>1,解得:b>4,∴a=b﹣2>0,,∴abc>0,故①正确;②∵a=b﹣2,c=1,∴(b﹣2)x2+bx+1﹣3=0,即∴(b﹣2)x2+bx﹣2=0,∴△=b2﹣4×(﹣2)×(b﹣2)=b2+8b﹣16=b(b+8)﹣16,∵b>4,∴△>0,∴关于x的方程ax2+bx+c﹣3=0有两个不等的实数根,故②正确;③∵a=b﹣2,c=1,第18页(共18页) ∴a+b+c=b﹣2+b+1=2b﹣1,∵b>4,∴2b﹣1>7,∴a+b+c>7.故③正确;故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.计算4a+2a﹣a的结果等于 5a .【解答】解:4a+2a﹣a=(4+2﹣1)a=5a.故答案为:5a.14.计算(+1)(﹣1)的结果等于 9 .【解答】解:原式=()2﹣1=10﹣1=9.故答案为9.15.不透明袋子中装有7个球,其中有3个红球、4个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是  .【解答】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是,故答案为:.16.将直线y=﹣6x向下平移2个单位长度,平移后直线的解析式为 y=﹣6x﹣2 .【解答】解:将直线y=﹣6x向下平移2个单位长度,平移后直线的解析式为y=﹣6x﹣2,故答案为:y=﹣6x﹣2.17.如图,正方形ABCD的边长为4,对角线AC,BD相交于点O,点E,F分别在BC,CD的延长线上,且CE=2,DF=1,G为EF的中点,连接OE,交CD于点H,连接GH,则GH的长为  .【解答】解:以O为原点,垂直AB的直线为x轴,建立直角坐标系,如图:第18页(共18页) ∵正方形ABCD的边长为4,CE=2,DF=1,∴E(4,﹣2),F(2,3),∵G为EF的中点,∴G(3,),设直线OE解析式为y=kx,将E(4,﹣2)代入得:﹣2=4k,解得k=﹣,∴直线OE解析式为y=﹣x,令x=2得y=﹣1,∴H(2,﹣1),∴GH==,故答案为:.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上.(Ⅰ)线段AC的长等于  ;(Ⅱ)以AB为直径的半圆的圆心为O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P,并简要说明点P的位置是如何找到的(不要求证明) 取BC与网格线的交点D,连接OD延长OD交⊙O于D点E,连接AE交BC于点G,连接BE,延长AC交BE的的延长线于F,连接FG延长FG交AB于点P,点P即为所求 .【解答】解:(Ⅰ)AC==.故答案为:.(Ⅱ)如图,取BC与网格线的交点D,连接OD延长OD交⊙O于D点E,连接AE交BC于点G,连接BE,延长AC交BE的的延长线于F,连接FG延长FG交AB于点P,点P即为所求.第18页(共18页) 故答案为:取BC与网格线的交点D,连接OD延长OD交⊙O于D点E,连接AE交BC于点G,连接BE,延长AC交BE的的延长线于F,连接FG延长FG交AB于点P,点P即为所求三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得 x≥﹣1 ;(Ⅱ)解不等式②,得 x≤3 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 ﹣1≤x≤3 .【解答】解:(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x≤3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣1≤x≤3.故答案为:x≥﹣1,x≤3,﹣1≤x≤3.20.(8分)某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月均用水量(单位:t).根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的家庭个数为 50 ,图①中m的值为 20 ;(Ⅱ)求统计的这组月均用水量数据的平均数、众数和中位数.【解答】解:(Ⅰ)本次接受调查的家庭个数为:8÷16%=50(个);m%=×100%=20%,即m=20;故答案为:50,20;(Ⅱ)这组月均用水量数据的平均数是:=5.9(t第18页(共18页) ),∵6出现了16次,出现的次数最多,∴这组数据的众数是6t;将这组数数据从小到大排列,其中处于中间的两个数都是6,∴这组数据的中位数是6t.21.(10分)已知△ABC内接于⊙O,AB=AC,∠BAC=42°,点D是⊙O上一点.(Ⅰ)如图①,若BD为⊙O的直径,连接CD,求∠DBC和∠ACD的大小;(Ⅱ)如图②,若CD∥BA,连接AD,过点作⊙O的切线,与OC的延长线交于点E,求∠E的大小.【解答】解:(Ⅰ)如图①,∵AB=AC,∴∠ABC=∠ACB=(180°﹣∠BAC)=×(180°﹣42°)=69°,∵BD为直径,∴∠BCD=90°,∵∠D=∠BAC=42°,∴∠DBC=90°﹣∠D=90°﹣42°=48°;∴∠ACD=∠ABD=∠ABC﹣∠DBC=69°﹣48°=21°;(Ⅱ)如图②,连接OD,∵CD∥AB,∴∠ACD=∠BAC=42°,∵四边形ABCD为⊙O的内接四边形,∴∠B+∠ADC=180°,∴∠ADC=180°﹣∠B=180°﹣69°=111°,∴∠CAD=180°﹣∠ACD﹣∠ADC=180°﹣42°﹣111°=27°,∴∠COD=2∠COD=54°,∵DE为切线,∴OD⊥DE,∴∠ODE=90°,∴∠E=90°﹣∠DOE=90°﹣54°=36°.第18页(共18页) 22.(10分)如图,一艘货船在灯塔C的正南方向,距离灯塔257海里的A处遇险,发出求救信号.一艘救生船位于灯塔C的南偏东40°方向上,同时位于A处的北偏东60°方向上的B处,救生船接到求救信号后,立即前往救援.求AB的长(结果取整数)参考数据:tan40°≈0.84,取1.73.【解答】解:如图,过点B作BH⊥AC,垂足为H,由题意得,∠BAC=60°,∠BCA=40°,AC=257,在Rt△ABH中,∵tan∠BAH=,cos∠BAH=,∴BH=AH•tan60°=AH,AB==2AH,在Rt△BCH中,∵tan∠BCH=,∴CH==,又∵CA=CH+AH,∴257=+AH,所以AH=,∴AB=≈=168(海里),答:AB的长约为168海里.第18页(共18页) 23.(10分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km,陈列馆离学校20km.李华从学校出发,匀速骑行0.6h到达书店;在书店停留0.4h后,匀速骑行0.5h到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5h后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离ykm与离开学校的时间xh之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开学校的时间/h0.10.50.813离学校的距离/km2 10  12 12 20 (Ⅱ)填空:①书店到陈列馆的距离为 8 km;②李华在陈列馆参观学习的时间为 3 h;③李华从陈列馆回学校途中,减速前的骑行速度为 28 km/h;④当李华离学校的距离为4km时,他离开学校的时间为 或 h.(Ⅲ)当0≤x≤1.5时,请直接写出y关于x的函数解析式.【解答】解:(Ⅰ)由题意得:当x=0.5时,y=10;当x=0.8时,y=12;当x=3时,y=20;故答案为:10;12;20;(Ⅱ)由题意得:①书店到陈列馆的距离为:(20﹣12)=8(km);②李华在陈列馆参观学习的时间为:(4.5﹣1.5)=3(h);③李华从陈列馆回学校途中,减速前的骑行速度为:(20﹣6)÷(5﹣4.5)=28(km/h);第18页(共18页) ④当李华离学校的距离为4km时,他离开学校的时间为:4÷(2÷0.6)=(h)或5+(6﹣4)÷[6÷(5.5﹣5)]=(h),故答案为:①8;②3;③28;④或;(Ⅲ)当0≤x≤0.6时,y=20x;当0.6<x≤1时,y=12;当1<x≤1.5时,设y关于x的函数解析式为y=kx+b,根据题意,得:,解得,∴y=16x﹣4,综上所述,y=.24.(10分)在平面直角坐标系中,O为原点,△OAB是等腰直角三角形,∠OBA=90°,BO=BA,顶点A(4,0),点B在第一象限,矩形OCDE的顶点E(﹣,0),点C在y轴的正半轴上,点D在第二象限,射线DC经过点B.(Ⅰ)如图①,求点B的坐标;(Ⅱ)将矩形OCDE沿x轴向右平移,得到矩形O′C′D′E′,点O,C,D,E的对应点分别为O′,C′,D′,E′.设OO′=t,矩形O′C′D′E′与△OAB重叠部分的面积为S.①如图②,当点E′在x轴正半轴上,且矩形O′C′D′E′与△OAB重叠部分为四边形时,D′E′与OB相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤t≤时,求S的取值范围(直接写出结果即可).【解答】解:(1)如图①,过点B作BH⊥OA,垂足为H,由点A(4,0),得OA=4,∵BO=BA,∠OBA=90°,∴OH=BH=OA==2,∴点B的坐标为(2,2);(2)①由点E(﹣,0),得OE=,由平移知,四边形O'C'D'E'是矩形,得∠O'E'D'=90°,O'E'=OE=,第18页(共18页) ∴OE'=OO'﹣O'E'=t﹣,∠FE'O=90°,∵BO=BA,∠OBA=90°,∴∠BOA=∠BAO=45°,∴∠OFE'=90°﹣∠BOA=45°,∴∠FOE'=∠OFE',∴FE'=OE'=t﹣,∴S△FOE'=OE'•FE'=(t﹣)2,∴S=S△OAB﹣S△FOE'=,即S=﹣t2+t﹣(4≤t<);②(Ⅰ)当4<t≤时,由①知S=﹣t2+t﹣=﹣(t﹣)2+4,∴当t=4时,S有最大值为,当t=时,S有最小值为,∴此时<S≤;(Ⅱ)当<t≤4时,如图2,令D'C'与AB交于点M,D'E'与DB交于点N,∴S=S△OAB﹣S△OE'N﹣S△O’AM=4﹣(t﹣)2﹣(4﹣t)2=﹣t2+t﹣=﹣(t﹣)2+,此时,当t=时,S有最大值为,当t=4时,S有最小值为,∴≤S≤;(Ⅲ)当≤t≤时,如图3,令D'C'与AB交于点M,此时点D'位于第二象限,∴S=S△OAB﹣S△O’AM=4﹣(4﹣t)2=﹣t2+4t﹣4=﹣(t﹣4)2+4,此时,当t=时,S有最小值为,当t=时,S有最大值为,∴≤S≤;综上,S的取值范围为≤S≤;∴S的取值范围为≤S≤.第18页(共18页) 25.(10分)已知抛物线y=ax2﹣2ax+c(a,c为常数,a≠0)经过点C(0,﹣1),顶点为D.(Ⅰ)当a=1时,求该抛物线的顶点坐标;(Ⅱ)当a>0时,点E(0,1+a),若DE=2DC,求该抛物线的解析式;(Ⅲ)当a<﹣1时,点F(0,1﹣a),过点C作直线l平行于x轴,M(m,0)是x轴上的动点,N(m+3,﹣1)是直线l上的动点.当a为何值时,FM+DN的最小值为2,并求此时点M,N的坐标.【解答】解:抛物线y=ax2﹣2ax+c(a,c为常数,a≠0)经过点C(0,﹣1),则c=﹣1,(Ⅰ)当a=1时,抛物线的表达式为y=x2﹣2x﹣1=(x﹣1)2﹣2,故抛物线的顶点坐标为(1,﹣2);(Ⅱ)∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣a﹣1,故点D(1,﹣a﹣1),由DE=2DC得:DE2=8CD2,即(1﹣0)2+(a+1+a+1)2=8[(1﹣0)2+(﹣a﹣1+1)2],解得a=或,故抛物线的表达式为y=x2﹣x﹣1或y=x2﹣3x﹣1;(Ⅲ)将点D向左平移3个单位,向上平移1个单位得到点D′(﹣2,﹣a),作点F关于x轴的对称点F′,则点F′的坐标为(0,a﹣1),第18页(共18页) 当满足条件的点M落在F′D′上时,由图象的平移知DN=D′M,故此时FM+ND最小,理由:∵FM+ND=F′M+D′M=F′D′为最小,即F′D′=2,则D′F′==2,解得a=(舍去)或﹣,则点D′、F′的坐标分别为(﹣2,)、(0,﹣),由点D′、F′的坐标得,直线D′F′的表达式为y=﹣3x﹣,当y=0时,y=﹣3x﹣=0,解得x=﹣=m,则m+3=,即点M的坐标为(﹣,0)、点N的坐标为(,﹣1).声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2021/6/257:44:01;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第18页(共18页)

10000+的老师在这里下载备课资料