2021年浙江省金华市中考数学试卷
加入VIP免费下载

2021年浙江省金华市中考数学试卷

ID:895808

大小:421 B

页数:27页

时间:2022-02-26

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2021年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数﹣,﹣,2,﹣3中,为负整数的是(  )A.﹣B.﹣C.2D.﹣32.(3分)+=(  )A.3B.C.D.3.(3分)太阳与地球的平均距离大约是150000000千米,其中数150000000用科学记数法表示为(  )A.1.5×108B.15×107C.1.5×107D.0.15×1094.(3分)一个不等式的解在数轴上表示如图,则这个不等式可以是(  )A.x+2>0B.x﹣2<0C.2x≥4D.2﹣x<05.(3分)某同学的作业如下框,其中※处填的依据是(  )如图,已知直线l1,l2,l3,l4.若∠1=∠2,则∠3=∠4.请完成下面的说理过程.解:已知∠1=∠2,根据(内错角相等,两直线平行),得l1∥l2.再根据(※),得∠3=∠4.A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,同旁内角互补6.(3分)将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是(  )第27页(共27页) A.B.C.D.7.(3分)如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为(  )A.4cosα米B.4sinα米C.4tanα米D.米8.(3分)已知点A(x1,y1),B(x2,y2)在反比例函数y=﹣的图象上.若x1<0<x2,则(  )A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<09.(3分)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是(  )A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%10.(3分)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向形外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则的值是(  )第27页(共27页) A.B.3πC.5πD.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)二次根式中,字母x的取值范围是  .12.(4分)已知是方程3x+2y=10的一个解,则m的值是  .13.(4分)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是  .14.(4分)如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为  cm.15.(4分)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC及四边形②的边CD都在x轴上,“猫”耳尖E在y轴上.若“猫”尾巴尖A的横坐标是1,则“猫”爪尖F的坐标是  .16.(4分)如图1是一种利用镜面反射,放大微小变化的装置.木条BC上的点P处安装一平面镜,BC与刻度尺边MN的交点为D,从A点发出的光束经平面镜P反射后,在MN上形成一个光点E.已知AB⊥BC,MN⊥BC,AB=6.5,BP=4,PD=8.第27页(共27页) (1)ED的长为  .(2)将木条BC绕点B按顺时针方向旋转一定角度得到BC′(如图2),点P的对应点为P′,BC′与MN的交点为D′,从A点发出的光束经平面镜P′反射后,在MN上的光点为E′.若DD′=5,则EE′的长为  .三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣1)2021+﹣4sin45°+|﹣2|.18.(6分)已知x=,求(3x﹣1)2+(1+3x)(1﹣3x)的值.19.(6分)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.(1)求矩形对角线的长.(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.20.(8分)小聪、小明准备代表班级参加学校“党史知识”竞赛,班主任对这两名同学测试了6次,获得如图测试成绩折线统计图.根据图中信息,解答下列问题:(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量.(2)求小聪成绩的方差.(3)现求得小明成绩的方差为S小明2=3(单位:平方分).根据折线统计图及上面两小题的计算,你认为哪位同学的成绩较好?请简述理由.第27页(共27页) 21.(8分)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣5)2+6.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10m,EF=1.8m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.22.(10分)在扇形AOB中,半径OA=6,点P在OA上,连结PB,将△OBP沿PB折叠得到△O′BP.(1)如图1,若∠O=75°,且BO′与所在的圆相切于点B.①求∠APO′的度数.②求AP的长.(2)如图2,BO′与相交于点D,若点D为的中点,且PD∥OB,求的长.第27页(共27页) 23.(10分)背景:点A在反比例函数y=(k>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,分别在射线AC,BO上取点D,E,使得四边形ABED为正方形.如图1,点A在第一象限内,当AC=4时,小李测得CD=3.探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请帮助小李解决下列问题.(1)求k的值.(2)设点A,D的横坐标分别为x,z,将z关于x的函数称为“Z函数”.如图2,小李画出了x>0时“Z函数”的图象.①求这个“Z函数”的表达式.②补画x<0时“Z函数”的图象,并写出这个函数的性质(两条即可).③过点(3,2)作一直线,与这个“Z函数”图象仅有一个交点,求该交点的横坐标.24.(12分)在平面直角坐标系中,点A的坐标为(﹣,0),点B在直线l:y=x上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB的长;若不存在,请说明理由.第27页(共27页) 第27页(共27页) 2021年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数﹣,﹣,2,﹣3中,为负整数的是(  )A.﹣B.﹣C.2D.﹣3【解答】解:A选项是负分数,不符合题意;B选项是无理数,不符合题意;C选项是正整数,不符合题意;D选项是负整数,符合题意;故选:D.2.(3分)+=(  )A.3B.C.D.【解答】解:+==,故选:D.3.(3分)太阳与地球的平均距离大约是150000000千米,其中数150000000用科学记数法表示为(  )A.1.5×108B.15×107C.1.5×107D.0.15×109【解答】解:150000000=1.5×108,故选:A.4.(3分)一个不等式的解在数轴上表示如图,则这个不等式可以是(  )A.x+2>0B.x﹣2<0C.2x≥4D.2﹣x<0【解答】解:A、x>﹣2,故A错误;B、x<2,故B正确;C、x≥2,故C错误;D、x>2,故D错误.故选:B.第27页(共27页) 5.(3分)某同学的作业如下框,其中※处填的依据是(  )如图,已知直线l1,l2,l3,l4.若∠1=∠2,则∠3=∠4.请完成下面的说理过程.解:已知∠1=∠2,根据(内错角相等,两直线平行),得l1∥l2.再根据(※),得∠3=∠4.A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,同旁内角互补【解答】解:已知∠1=∠2,根据内错角相等,两直线平行,得l1∥l2,再根据两直线平行,同位角相等,得∠3=∠4.故选:C.6.(3分)将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是(  )A.B.C.D.【解答】解:选项A、B、C均可能是该直棱柱展开图,而选项D中的两个底面会重叠,不可能是它的表面展开图,故选:D.第27页(共27页) 7.(3分)如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为(  )A.4cosα米B.4sinα米C.4tanα米D.米【解答】解:过点A作AD⊥BC于点D,∵AB=AC=2米,AD⊥BC,∴BD=DC,∴cosα==,∴DC=2cosα(米),∴BC=2DC=2•2cosα=4cosα(米)。故选:A.8.(3分)已知点A(x1,y1),B(x2,y2)在反比例函数y=﹣的图象上.若x1<0<x2,则(  )A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0【解答】解:∵k=﹣12<0,∴双曲线在第二,四象限,∵x1<0<x2,∴点A在第二象限,点B在第四象限,∴y2<0<y1;故选:B.9.(3分)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是(  )A.先打九五折,再打九五折第27页(共27页) B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【解答】解:设商品原标价为a元,A.先打九五折,再打九五折的售价为:0.95×0.95a=0.9025a;B.先提价50%,再打六折的售价为:(1+50%)×0.6a=0.9a;C.先提价30%,再降价30%的售价为:(1+30%)(1﹣30%)a=0.91a;D.先提价25%,再降价25%的售价为:(1+25%)(1﹣25%)a=0.9375a,∵0.9a<0.9025a<0.91a<0.9375a,∴B选项的调价方案调价后售价最低,故选:B.10.(3分)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向形外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则的值是(  )A.B.3πC.5πD.【解答】解:如图,设AB=c,AC=b,BC=a,则a2+b2=c2,①取AB的中点为O,第27页(共27页) ∵△ABC是直角三角形,∴OA=OB=OC,∵圆心在MN和HG的垂直平分线上,∴O为圆心,连接OG,OE,则OG,OE为半径,由勾股定理得:,②由①②得a=b,∴,∴,∴,∴,故选:C.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)二次根式中,字母x的取值范围是 x≥3 .【解答】解:当x﹣3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.12.(4分)已知是方程3x+2y=10的一个解,则m的值是 2 .【解答】解:把代入方程得:3×2+2m=10,∴m=2,故答案为:2.13.(4分)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是  .【解答】解:∵共有150张奖券,一等奖5个,∴1张奖券中一等奖的概率==.第27页(共27页) 故答案为:.14.(4分)如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为 2 cm.【解答】解:如图,连接BD,过点E作EF⊥AC于点F,∵四边形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等边三角形,∵菱形ABCD的边长为6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴=,∴=,∴A′E=4(cm),∵∠EA′F=∠DAC=DAB=30°,∴EF=A′E=2(cm).第27页(共27页) 故答案为:2.15.(4分)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC及四边形②的边CD都在x轴上,“猫”耳尖E在y轴上.若“猫”尾巴尖A的横坐标是1,则“猫”爪尖F的坐标是 (﹣﹣,+) .【解答】解:如图,作AH⊥x轴于H,过点F作FJ⊥y轴于J交PQ于K,延长PQ交OB于T.设大正方形的边长为4a,则OC=a,CD=2a,在Rt△ADH中,∠ADH=45°,∴AH=AD=a,∴OH=4a,∵点A的横坐标为1,∴4a=1,∴a=,在Rt△FPQ中,PF=FQ=2a=,∴PQ=PF=,∵FK⊥PQ,∴PK=KQ,∴FK=PK=QK=,∵KJ=,PT=1+(﹣)=+,第27页(共27页) ∴FJ=+,KT=PT﹣PK=+﹣=+,∴F(﹣﹣,+).故答案为:(﹣﹣,+).16.(4分)如图1是一种利用镜面反射,放大微小变化的装置.木条BC上的点P处安装一平面镜,BC与刻度尺边MN的交点为D,从A点发出的光束经平面镜P反射后,在MN上形成一个光点E.已知AB⊥BC,MN⊥BC,AB=6.5,BP=4,PD=8.(1)ED的长为 13 .(2)将木条BC绕点B按顺时针方向旋转一定角度得到BC′(如图2),点P的对应点为P′,BC′与MN的交点为D′,从A点发出的光束经平面镜P′反射后,在MN上的光点为E′.若DD′=5,则EE′的长为 11.5 .【解答】解:(1)如图,由题意可得,∠APB=∠EPD,∠B=∠EDP=90°,∴△ABP∽△EDP,∴=,∵AB=6.5,BP=4,PD=8,∴=,∴DE=13;故答案为:13.(2)如图2,过点E′作∠E′FG=∠E′D′F,过点E′作E′G⊥BC′于点G,第27页(共27页) ∴E′F=E′D′,FG=GD′,∵AB∥MN,∴∠ABD′+∠E′D′B=180°,∴∠ABD′+∠E′FG=180°,∵∠E′FB+∠E′FG=180°,∴∠ABP′=∠E′FP′,又∠AP′B=∠E′P′F,∴△ABP′∽△E′FP′,∴=即,=,设P′F=4m,则E′F=6.5m,∴E′D′=6.5m,在Rt△BDD′中,∠BDD′=90°,DD′=5,BD=BP+PD=12,由勾股定理可得,BD′=13,∴cos∠BD′D=,在Rt△E′GD′中,cos∠BD′D==,∴GD′=2.5m,∴FG=GD′=2.5m,∵BP′+P′F+FG+GD′=13,∴4+4m+2.5m+2.5m=13,解得m=1,∴E′D′=6.5,∴EE′=DE+DD′﹣D′E′=13+5﹣6.5=11.5.故答案为:11.5.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)第27页(共27页) 17.(6分)计算:(﹣1)2021+﹣4sin45°+|﹣2|.【解答】解:原式=﹣1+﹣4×+2=﹣1+2﹣2+2=1.18.(6分)已知x=,求(3x﹣1)2+(1+3x)(1﹣3x)的值.【解答】解:(3x﹣1)2+(1+3x)(1﹣3x)=9x2﹣6x+1+1﹣9x2=﹣6x+2,当x=时,原式=﹣6×+2=﹣1+2=1.19.(6分)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.(1)求矩形对角线的长.(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.【解答】解:(1)∵∠BOC=120°,∴∠AOB=60°,∵四边形ABCD是矩形,∴∠BAD=90°,AC=BD,AO=OC,BO=DO,∴AO=BO,∴△AOB是等边三角形,∴AB=AO=BO,∵AB=2,∴BO=2,∴BD=2BO=4,∴矩形对角线的长为4;第27页(共27页) (2)由勾股定理得:AD===2,∵OA=OD,OE⊥AD于点E,∴AE=DE=AD=,∴tanα==.20.(8分)小聪、小明准备代表班级参加学校“党史知识”竞赛,班主任对这两名同学测试了6次,获得如图测试成绩折线统计图.根据图中信息,解答下列问题:(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量.(2)求小聪成绩的方差.(3)现求得小明成绩的方差为S小明2=3(单位:平方分).根据折线统计图及上面两小题的计算,你认为哪位同学的成绩较好?请简述理由.【解答】解:(1)要评价每位同学成绩的平均水平,选择平均数即可,小聪成绩的平均数:(7+8+7+10+7+9)=8,小明成绩的平均数:(7+6+6+9+10+10)=8,答:应选择平均数,小聪、小明的平均数分别是8,8;(2)小聪成绩的方差为:[(7﹣8)2+(8﹣8)2+(7﹣8)2+(10﹣8)2+(7﹣8)2+(9﹣8)2]=;(3)小聪同学的成绩较好,理由:由(1)可知两人的平均数相同,因为小聪成绩的方差方差小于小明成绩的方差,成绩相对稳定.故小聪同学的成绩较好.21.(8分)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D第27页(共27页) 为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣5)2+6.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10m,EF=1.8m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.【解答】解:(1)当x=0时,y=﹣(0﹣5)2+6=,∴点A的坐标为(0,),∴雕塑高m.(2)当y=0时,﹣(x﹣5)2+6=0,解得:x1=﹣1(舍去),x2=11,∴点D的坐标为(11,0),∴OD=11m.∵从A点向四周喷水,喷出的水柱为抛物线,且形状相同,∴OC=OD=11m,∴CD=OC+OD=22m.(3)当x=10时,y=﹣(10﹣5)2+6=,∴点(10,)在抛物线y=﹣(x﹣5)2+6上.又∵≈1.83>1.8,∴顶部F不会碰到水柱.22.(10分)在扇形AOB中,半径OA=6,点P在OA上,连结PB,将△OBP沿PB折叠得到△O′BP.(1)如图1,若∠O=75°,且BO′与所在的圆相切于点B.①求∠APO′的度数.第27页(共27页) ②求AP的长.(2)如图2,BO′与相交于点D,若点D为的中点,且PD∥OB,求的长.【解答】解:(1)①如图1中,∵BO′是⊙O的切线,∴∠OBO′=90°,由翻折的性质可知,∠OBP=∠PBO′=45°,∠OPB=∠BPO′,∵∠AOB=75°,∴∠OPB=∠BPO′=180°﹣75°﹣45°=60°,∴∠OPO′=120°,∴∠APO′=180°﹣∠OPO′=180°﹣120°=60°.②如图1中,过点B作BH⊥OA于H,在BH上取一点F,使得OF=FB,连接OF.∵∠BHO=90°,∴∠OBH=90°﹣∠BOH=15°,∵FO=FB,∴∠FOB=∠FBO=15°,∴∠OFH=∠FOB+∠FBO=30°,设OH=m,则HF=m,OF=FB=2m,∵OB2=OH2+BH2,∴62=m2+(m+2m)2,∴m=或﹣(舍弃),∴OH=,BH=,在Rt△PBH中,PH==,第27页(共27页) ∴PA=OA﹣OH﹣PH=6﹣﹣=6﹣2.(2)如图2中,连接AD,OD.∵=,∴AD=BD,∠AOD=∠BOD,由翻折的旋转可知,∠OBP=∠PBD,∵PD∥OB,∴∠DPB=∠OBP,∴∠DPB=∠PBD,∴DP=DB=AD,∴∠DAP=∠APD=∠AOB,∵AO=OD=OB,AD=DB,∴△AOD≌△BOD,∴∠OBD=∠OAD=∠AOB=2∠BOD,∵OB=OD,∴∠OBD=∠ODB=2∠DOB,∴∠DOB=36°,∴∠AOB=72°,∴的长==。第27页(共27页) 23.(10分)背景:点A在反比例函数y=(k>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,分别在射线AC,BO上取点D,E,使得四边形ABED为正方形.如图1,点A在第一象限内,当AC=4时,小李测得CD=3.探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请帮助小李解决下列问题.(1)求k的值.(2)设点A,D的横坐标分别为x,z,将z关于x的函数称为“Z函数”.如图2,小李画出了x>0时“Z函数”的图象.①求这个“Z函数”的表达式.②补画x<0时“Z函数”的图象,并写出这个函数的性质(两条即可).③过点(3,2)作一直线,与这个“Z函数”图象仅有一个交点,求该交点的横坐标.【解答】解:(1)∵AC=4,CD=3,∴AD=AC﹣CD=1,∵四边形ABED是正方形,∴AB=1,∵AC⊥y轴,AB⊥x轴,∴∠ACO=∠COB=∠OBA=90°,∴四边形ABOC是矩形,∴OB=AC=4,∴A(4,1),第27页(共27页) ∴k=4.(2)①由题意,A(x,x﹣z),∴x(x﹣z)=4,∴z=x﹣.②图象如图所示.性质1:x>0时,y随x的增大而增大.性质2:x<0时,y随x的增大而增大.③设直线的解析式为y=kx+b,把(3,2)代入得到,2=3k+b,∴b=2﹣3k,∴直线的解析式为y=kx+2﹣3k,由,消去y得到,(k﹣1)x2+(2﹣3k)x+4=0,当△=0时,(2﹣3k)2﹣4(k﹣1)×4=0,解得k=或2,当k=时,方程为x2﹣x+4,解得x=6.当k=2时,方程为x2﹣4x+4=0,解得x=2.综上所述,满足条件的交点的横坐标为2或6.第27页(共27页) 24.(12分)在平面直角坐标系中,点A的坐标为(﹣,0),点B在直线l:y=x上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB的长;若不存在,请说明理由.【解答】(1)①证明:∵BC⊥AB,CO⊥BO,∴∠ABC=∠BCO=90°,∴∠BAD+∠ADB=∠COD+∠DOB=90°,∵BA=BO,∴∠BAD=∠DOB,∴∠ADB=∠COD,∵∠ADB=∠CDO,∴∠COD=∠CDO,∴CD=CO;②解:过A作AM⊥OB于M,过M作MN⊥y轴于N,如图:第27页(共27页) ∵M在直线l:y=x上,设M(m,m),∴MN=|m|=﹣m,ON=|m|=﹣m,Rt△MON中,tan∠OMN==,而OA∥MN,∴∠AOM=∠OMN,∴tan∠AOM=,即=,设AM=3n,则OM=8n,Rt△AOM中,AM2+OM2=OA2,又A的坐标为(﹣,0),∴OA=,∴(3n)2+(8n)2=()2,解得n=1(n=﹣1舍去),∴AM=3,OM=8,∵∠CBO=45°,CO⊥BO,∴△BOC是等腰直角三角形,∵BC⊥AB,∠CBO=45°,∴∠ABM=45°,∵AM⊥OB,∴△ABM是等腰直角三角形,∴AM=BM=3,BO=CO=OM﹣BM=5,∴等腰直角三角形△ABM中,AB=AM=3,等腰直角三角形△BOC中,BC=BO=5,∴S△ABC=AB•BC=15,S△BOC=BO•CO=,∴S四边形ABOC=S△ABC+S△BOC=;(2)解:存在点B,使得以A,B,C为顶点的三角形与△BCO相似,理由如下:过A作AM⊥OB于M,如图:第27页(共27页) 由(1)②可知:AM=3,OM=8,设OB=x,则BM=8﹣x,AB=,∵CO⊥BO,AM⊥BO,AB⊥BC,∴∠AMB=∠BOC=90°,∠ABM=90°﹣∠OBC=∠BCO,∴△AMB∽△BOC,∴=,即=,∴OC=,Rt△BOC中,BC==,∵∠ABC=∠BOC=90°,∴以A,B,C为顶点的三角形与△BCO相似,分两种情况:①若=,则=,解得x=4,∴此时OB=4;②若=,则=,解得x1=4+,x2=4﹣,∴OB=4+或OB=4﹣;综上所述,以A,B,C为顶点的三角形与△BCO相似,则OB的长度为:4或4+或4﹣;第27页(共27页) 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2021/6/238:56:42;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第27页(共27页)

10000+的老师在这里下载备课资料